首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complete connectional map (connectome) of a neural circuit is essential for understanding its structure and function. Such maps have only been obtained in Caenorhabditis elegans. As an attempt at solving mammalian circuits, we reconstructed the connectomes of six interscutularis muscles from adult transgenic mice expressing fluorescent proteins in all motor axons. The reconstruction revealed several organizational principles of the neuromuscular circuit. First, the connectomes demonstrate the anatomical basis of the graded tensions in the size principle. Second, they reveal a robust quantitative relationship between axonal caliber, length, and synapse number. Third, they permit a direct comparison of the same neuron on the left and right sides of the same vertebrate animal, and reveal significant structural variations among such neurons, which contrast with the stereotypy of identified neurons in invertebrates. Finally, the wiring length of axons is often longer than necessary, contrary to the widely held view that neural wiring length should be minimized. These results show that mammalian muscle function is implemented with a variety of wiring diagrams that share certain global features but differ substantially in anatomical form. This variability may arise from the dominant role of synaptic competition in establishing the final circuit.  相似文献   

2.
Connections of the living human brain, on a macroscopic scale, can be mapped by a diffusion MR imaging based workflow. Since the same anatomic regions can be corresponded between distinct brains, one can compare the presence or the absence of the edges, connecting the very same two anatomic regions, among multiple cortices. Previously, we have constructed the consensus braingraphs on 1015 vertices first in five, then in 96 subjects in the Budapest Reference Connectome Server v1.0 and v2.0, respectively. Here we report the construction of the version 3.0 of the server, generating the common edges of the connectomes of variously parameterizable subsets of the 1015-vertex connectomes of 477 subjects of the Human Connectome Project’s 500-subject release. The consensus connectomes are downloadable in CSV and GraphML formats, and they are also visualized on the server’s page. The consensus connectomes of the server can be considered as the “average, healthy” human connectome since all of their connections are present in at least k subjects, where the default value of \(k=209\), but it can also be modified freely at the web server. The webserver is available at http://connectome.pitgroup.org.  相似文献   

3.
4.
In the past few years, several studies have been directed to understanding the complexity of functional interactions between different brain regions during various human behaviors. Among these, neuroimaging research installed the notion that speech and language require an orchestration of brain regions for comprehension, planning, and integration of a heard sound with a spoken word. However, these studies have been largely limited to mapping the neural correlates of separate speech elements and examining distinct cortical or subcortical circuits involved in different aspects of speech control. As a result, the complexity of the brain network machinery controlling speech and language remained largely unknown. Using graph theoretical analysis of functional MRI (fMRI) data in healthy subjects, we quantified the large-scale speech network topology by constructing functional brain networks of increasing hierarchy from the resting state to motor output of meaningless syllables to complex production of real-life speech as well as compared to non-speech-related sequential finger tapping and pure tone discrimination networks. We identified a segregated network of highly connected local neural communities (hubs) in the primary sensorimotor and parietal regions, which formed a commonly shared core hub network across the examined conditions, with the left area 4p playing an important role in speech network organization. These sensorimotor core hubs exhibited features of flexible hubs based on their participation in several functional domains across different networks and ability to adaptively switch long-range functional connectivity depending on task content, resulting in a distinct community structure of each examined network. Specifically, compared to other tasks, speech production was characterized by the formation of six distinct neural communities with specialized recruitment of the prefrontal cortex, insula, putamen, and thalamus, which collectively forged the formation of the functional speech connectome. In addition, the observed capacity of the primary sensorimotor cortex to exhibit operational heterogeneity challenged the established concept of unimodality of this region.  相似文献   

5.
A better characterization of how an individual’s brain is functionally organized will likely bring dramatic advances to many fields of study. Here we show a model-based approach toward characterizing resting state functional connectivity MRI (rs-fcMRI) that is capable of identifying a so-called “connectotype”, or functional fingerprint in individual participants. The approach rests on a simple linear model that proposes the activity of a given brain region can be described by the weighted sum of its functional neighboring regions. The resulting coefficients correspond to a personalized model-based connectivity matrix that is capable of predicting the timeseries of each subject. Importantly, the model itself is subject specific and has the ability to predict an individual at a later date using a limited number of non-sequential frames. While we show that there is a significant amount of shared variance between models across subjects, the model’s ability to discriminate an individual is driven by unique connections in higher order control regions in frontal and parietal cortices. Furthermore, we show that the connectotype is present in non-human primates as well, highlighting the translational potential of the approach.  相似文献   

6.
A fundamental assumption in neuroscience is that brain function is constrained by its structural properties. This motivates the idea that the brain can be parcellated into functionally coherent regions based on anatomical connectivity patterns that capture how different areas are interconnected. Several studies have successfully implemented this idea in humans using diffusion weighted MRI, allowing parcellation to be conducted in vivo. Two distinct approaches to connectivity-based parcellation can be identified. The first uses the connection profiles of brain regions as a feature vector, and groups brain regions with similar connection profiles together. Alternatively, one may adopt a network perspective that aims to identify clusters of brain regions that show dense within-cluster and sparse between-cluster connectivity. In this paper, we introduce a probabilistic model for connectivity-based parcellation that unifies both approaches. Using the model we are able to obtain a parcellation of the human brain whose clusters may adhere to either interpretation. We find that parts of the connectome consistently cluster as densely connected components, while other parts consistently result in clusters with similar connections. Interestingly, the densely connected components consist predominantly of major cortical areas, while the clusters with similar connection profiles consist of regions that have previously been identified as the ‘rich club’; regions known for their integrative role in connectivity. Furthermore, the probabilistic model allows quantification of the uncertainty in cluster assignments. We show that, while most clusters are clearly delineated, some regions are more difficult to assign. These results indicate that care should be taken when interpreting connectivity-based parcellations obtained using alternative deterministic procedures.  相似文献   

7.
We implement the Ising model on a structural connectivity matrix describing the brain at two different resolutions. Tuning the model temperature to its critical value, i.e. at the susceptibility peak, we find a maximal amount of total information transfer between the spin variables. At this point the amount of information that can be redistributed by some nodes reaches a limit and the net dynamics exhibits signature of the law of diminishing marginal returns, a fundamental principle connected to saturated levels of production. Our results extend the recent analysis of dynamical oscillators models on the connectome structure, taking into account lagged and directional influences, focusing only on the nodes that are more prone to became bottlenecks of information. The ratio between the outgoing and the incoming information at each node is related to the the sum of the weights to that node and to the average time between consecutive time flips of spins. The results for the connectome of 66 nodes and for that of 998 nodes are similar, thus suggesting that these properties are scale-independent. Finally, we also find that the brain dynamics at criticality is organized maximally to a rich-club w.r.t. the network of information flows.  相似文献   

8.

Rationale

Disruptions of brain anatomical connectivity are believed to play a central role in several neurological and psychiatric illnesses. The structural brain connectome is typically derived from diffusion tensor imaging (DTI), which may be influenced by methodological factors related to signal processing, MRI scanners and biophysical properties of neuroanatomical regions. In this study, we evaluated how these variables affect the reproducibility of the structural connectome.

Methods

Twenty healthy adults underwent 3 MRI scanning sessions (twice in the same MRI scanner and a third time in a different scanner unit) within a short period of time. The scanning sessions included similar T1 weighted and DTI sequences. Deterministic or probabilistic tractography was performed to assess link weight based on the number of fibers connecting gray matter regions of interest (ROI). Link weight and graph theory network measures were calculated and reproducibility was assessed through intra-class correlation coefficients, assuming each scanning session as a rater.

Results

Connectome reproducibility was higher with data from the same scanner. The probabilistic approach yielded larger reproducibility, while the individual variation in the number of tracked fibers from deterministic tractography was negatively associated with reproducibility. Links connecting larger and anatomically closer ROIs demonstrated higher reproducibility. In general, graph theory measures demonstrated high reproducibility across scanning sessions.

Discussion

Anatomical factors and tractography approaches can influence the reproducibility of the structural connectome and should be factored in the interpretation of future studies. Our results demonstrate that connectome mapping is a largely reproducible technique, particularly as it relates to the geometry of network architecture measured by graph theory methods.  相似文献   

9.
Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4–5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the “core-in-modules” decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems.  相似文献   

10.
Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression.  相似文献   

11.

Purpose

This study aimed to investigate the topological organization of intrinsic functional brain networks in patients with end-stage renal disease (ESRD).

Materials and Methods

Resting-state functional MRI data were collected from 22 patients with ESRD (16 men, 18–61 years) and 29age- and gender-matched healthy controls (HCs, 19 men, 32–61 years). Whole-brain functional networks were obtained by calculating the interregional correlation of low-frequency fluctuations in spontaneous brain activity among 1,024 parcels that cover the entire cerebrum. Weighted graph-based models were then employed to topologically characterize these networks at different global, modular and nodal levels.

Results

Compared to HCs, the patients exhibited significant disruption in parallel information processing over the whole networks (P< 0.05). The disruption was present in all the functional modules (default mode, executive control, sensorimotor and visual networks) although decreased functional connectivity was observed only within the default mode network. Regional analysis showed that the disease disproportionately weakened nodal efficiency of the default mode components and tended to preferentially affect central or hub-like regions. Intriguingly, the network abnormalities correlated with biochemical hemoglobin and serum calcium levels in the patients. Finally, the functional changes were substantively unchanged after correcting for gray matter atrophy in the patients.

Conclusion

Our findings provide evidence for the disconnection nature of ESRD’s brain and therefore have important implications for understanding the neuropathologic substrate of the disease from disrupted network organization perspective.  相似文献   

12.
13.
14.
15.
16.
Sequencing the maize genome   总被引:2,自引:0,他引:2  
Sequencing of complex genomes can be accomplished by enriching shotgun libraries for genes. In maize, gene-enrichment by copy-number normalization (high C(0)t) and methylation filtration (MF) have been used to generate up to two-fold coverage of the gene-space with less than 1 million sequencing reads. Simulations using sequenced bacterial artificial chromosome (BAC) clones predict that 5x coverage of gene-rich regions, accompanied by less than 1x coverage of subclones from BAC contigs, will generate high-quality mapped sequence that meets the needs of geneticists while accommodating unusually high levels of structural polymorphism. By sequencing several inbred strains, we propose a strategy for capturing this polymorphism to investigate hybrid vigor or heterosis.  相似文献   

17.
Sequencing the rice genome   总被引:5,自引:0,他引:5       下载免费PDF全文
Eckardt NA 《The Plant cell》2000,12(11):2011-2018
  相似文献   

18.
19.
A report on the Cold Spring Harbor Laboratory meeting 'Systems Biology: Global Regulation of Gene Expression', Cold Spring Harbor, USA, 27-30 March 2008.  相似文献   

20.
This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structural connectome for a single individual. The finite element model incorporates various length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging. Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the "damaged" network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations predict no network nodes were completely disconnected from the network, despite significant damage to network edges. At early times ([Formula: see text]) network measures of global and local efficiency were degraded little; however, as time increased to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based understanding of injury, but also neurophysiological insight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号