首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress and neurotrophic support decline seem to be crucially involved in brain aging. Emerging evidences indicate the pro-oxidant methylglyoxal (MG) as a key player in the age-related dicarbonyl stress and molecular damage within the central nervous system. Although exercise promotes the overproduction of reactive oxygen species, habitual exercise may retard cellular aging and reduce the age-dependent cognitive decline through hormetic adaptations, yet molecular mechanisms underlying beneficial effects of exercise are still largely unclear. In particular, whereas adaptive responses induced by exercise initiated in youth have been broadly investigated, the effects of chronic and moderate exercise begun in adult age on biochemical hallmarks of very early senescence in mammal brains have not been extensively studied. This research investigated whether a long-term, forced and moderate running initiated in adult age may affect the interplay between the redox-related profile and the oxidative-/MG-dependent molecular damage patterns in CD1 female mice cortices; as well, we investigated possible exercise-induced effects on the activity of the brain derived neurotrophic factor (BDNF)-dependent pathway. Our findings suggested that after a transient imbalance in almost all parameters investigated, the lately-initiated exercise regimen strongly reduced molecular damage profiles in brains of adult mice, by enhancing activities of the main ROS- and MG-targeting scavenging systems, as well as by preserving the BDNF-dependent signaling through the transition from adult to middle age.  相似文献   

2.
Exercise enhances general health. However, its effects on neurodegeneration are controversial, and the molecular pathways in the brain involved in this enhancement are poorly understood. Here, we examined the effect of long-term moderate treadmill training on adult male rat cortex and hippocampus to identify the cellular mechanisms behind the effects of exercise. We compared three animal groups: exercised (30 min/day, 12 m/min, 5 days/wk, 36 wk), handled but nonexercised (treadmill handling procedure, 0 m/min), and sedentary (nonhandled and nonexercised). Moderate long-term exercise induced an increase in IGF-1 levels and also in energy parameters, such as PGC-1α and the OXPHOS system. Moreover, the sirtuin 1 pathway was activated in both the exercised and nonexercised groups but not in sedentary rats. This induction could be a consequence of exercise as well as the handling procedure. To determine whether the long-term moderate treadmill training had neuroprotective effects, we studied tau hyperphosphorylation and GSK3β activation. Our results showed reduced levels of phospho-tau and GSK3β activation mainly in the hippocampus of the exercised animals. In conclusion, in our rodent model, exercise improved several major brain parameters, especially in the hippocampus. These improvements induced the upregulation of sirtuin 1, a protein that extends life, the stimulation of mitochondrial biogenesis, the activation of AMPK, and the prevention of signs of neurodegeneration. These findings are consistent with other reports showing that physical exercise has positive effects on hormesis.  相似文献   

3.
New neurons are continuously born in the hippocampus of several mammalian species throughout adulthood. Adult neurogenesis represents a natural model for understanding how to grow and incorporate new nerve cells into preexisting circuits in the brain. Finding molecules or biological pathways that increase neurogenesis has broad potential for regenerative medicine. One strategy is to identify mouse strains that display large vs. small increases in neurogenesis in response to wheel running so that the strains can be contrasted to find common genes or biological pathways associated with enhanced neuron formation. Therefore, mice from 12 different isogenic strains were housed with or without running wheels for 43 days to measure the genetic regulation of exercise-induced neurogenesis. During the first 10 days mice received daily injections of 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. Neurogenesis was measured as the total number of BrdU cells co-expressing NeuN mature neuronal marker in the hippocampal granule cell layer by immunohistochemistry. Exercise increased neurogenesis in all strains, but the magnitude significantly depended on genotype. Strain means for distance run on wheels, but not distance traveled in cages without wheels, were significantly correlated with strain mean level of neurogenesis. Furthermore, certain strains displayed greater neurogenesis than others for a fixed level of running. Strain means for neurogenesis under sedentary conditions were not correlated with neurogenesis under runner conditions suggesting that different genes influence baseline vs. exercise-induced neurogenesis. Genetic contributions to exercise-induced hippocampal neurogenesis suggest that it may be possible to identify genes and pathways associated with enhanced neuroplastic responses to exercise.  相似文献   

4.
5.
Abstract

Although the importance of glutathione in protection against oxidative stress is well recognised, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13–14) aged 20–30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH)decreased by 13% with exercise. Of the measured red blood cell (RBC)antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

6.
Although the importance of glutathione in protection against oxidative stress is well recognized, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13-14) aged 20-30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH) decreased by 13% with exercise. Of the measured red blood cell (RBC) antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

7.
This study examined the effects of a 2-mo antioxidant vitamin treatment on acute hematological and hemorheological alterations induced by exhausting exercise; both sedentary and trained individuals were employed. Eighteen young male, human subjects (9 sedentary, 9 trained by regular exercise) participated in the study and performed an initial maximal aerobic cycle ergometer exercise with frequent blood sampling over a 24-h period and analysis of hematological and hemorheological parameters. All subjects were treated with an antioxidant vitamin A, C, and E regimen, supplemented orally for 2 mo, and then subjected to a second exercise test and blood sampling at the end of this period. In the sedentary group during the first testing period (before vitamin treatment), white blood cell counts and granulocyte percentages were increased at 2 h after the exercise test and remained elevated for 4-12 h. Red blood cell (RBC) deformability and aggregation were also altered by exercise in the sedentary group before vitamin treatment. However, none of these parameters in the sedentary group were altered by exercise after the 2-mo period of antioxidant vitamin treatment. With the exception of a transient rise in granulocyte percentage, these parameters were also not affected in the trained subjects before the vitamin treatment. Significant increases of RBC lipid peroxidation observed 12 h after the exercise test in both sedentary and trained subjects were also totally prevented by vitamin treatment. Our results indicate that antioxidant vitamin treatment is effective in preventing the inflammation-like response and coincident adverse hemorheological changes after an episode of exhausting exercise, and suggest that such changes may be related to exercise-induced death events.  相似文献   

8.
Physical exercise and smoking are environmental factors that generally cause opposite health-promoting adaptations. Both physical exercise and smoking converge on mitochondrial adaptations in various tissues, including the pro-oxidant nervous system. Here, we analyzed the impact of cigarette smoking on exercise-induced brain mitochondrial adaptations in the hippocampus and pre-frontal cortex of adult mice. The animals were exposed to chronic cigarette smoke followed by 8 weeks of moderate-intensity physical exercise that increased mitochondrial activity in the hippocampus and pre-frontal cortex in the non-smoker mice. However, mice previously exposed to cigarette smoke did not present these exercise-induced mitochondrial adaptations. Our results suggest that smoking can inhibit some brain health-promoting changes induced by physical exercise.  相似文献   

9.
10.
Age-related memory loss is considered to commence at middle-age and coincides with reduced adult hippocampal neurogenesis and neurotrophin levels. Consistent physical activity at midlife may preserve brain-derived neurotrophic factor (BDNF) levels, new cell genesis, and learning. In the present study, 9-month-old female C57Bl/6J mice were housed with or without a running wheel and injected with bromodeoxyuridine (BrdU) to label newborn cells. Morris water maze learning, open field activity and rotarod behavior were tested 1 and 6 months after exercise onset. Here we show that long-term running improved retention of spatial memory and modestly enhanced rotarod performance at 15 months of age. Both hippocampal neurogenesis and mature BDNF peptide levels were elevated after long-term running. Thus, regular exercise from the onset and during middle-age may maintain brain function.  相似文献   

11.
The aim was to test the hypothesis that 7 days of bed rest reduces mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after bed rest. Twelve young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from six of the subjects prior to, immediately after, and 3 h after 45 min of one-legged knee extensor exercise performed before and after bed rest. Maximal oxygen uptake decreased by 4%, and exercise endurance decreased nonsignificantly, by 11%, by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content ~45%, 3-hydroxyacyl-CoA dehydrogenase and citrate synthase activity ~8%, and miR-1 and miR-133a content ~10%. However, cytochrome c and vascular endothelial growth factor (VEGF) protein content as well as capillarization did not change significantly with bed rest. Acute exercise increased AMP-activated protein kinase phosphorylation, peroxisome proliferator activated receptor-γ coactivator-1α, and VEGF mRNA content in skeletal muscle before bed rest, but the responses were abolished after bed rest. The present findings indicate that only 7 days of physical inactivity reduces skeletal muscle metabolic capacity as well as abolishes exercise-induced adaptive gene responses, likely reflecting an interference with the ability of skeletal muscle to adapt to exercise.  相似文献   

12.
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1α and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1α protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1α expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1α and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.  相似文献   

13.
为了探讨力竭运动诱导的氧化应激反应对大鼠红细胞Band3蛋白的影响,该文以大鼠跑步运动为模型,对三种不同运动条件下(静坐组、适度运动组和力竭运动组)大鼠红细胞抗氧化能力和氧化损伤程度进行了检测,并对氧化应激反应诱导的红细胞膜Band3蛋白表达和分布情况及其调控的阴离子通道活性进行了分析。结果表明:力竭运动条件下大鼠红细胞受到严重的氧化应激损伤,红细胞内抗氧化能力下降;导致膜Band3蛋白巯基交联为主的蛋白聚簇化反应及其阴离子转运能力的下降。Band3蛋白的损伤将进一步诱导红细胞携氧和变形能力的下降,成为运动相关疾病的潜在致病因素。  相似文献   

14.
An important methodological threat when selecting individuals based on initial values for a given trait is the “regression to the mean” artifact. This artifact appears when a group with an extreme mean value during a first measurement tends to obtain a less extreme value (i.e. tends toward the mean) on a subsequent measurement. The main aim was to experimentally confirm the presence of this artifact in the responses of the reference oxidative stress biomarker (F2-isoprostanes) after exercise. Urine samples were collected before and immediately following acute exercise in order to determine the level of exercise-induced oxidative stress. Afterwards, participants were arranged into three groups based on their levels of exercise-induced oxidative stress (low, moderate and high oxidative stress groups; n?=?12 per group). In order to verify the existence of the regression to the mean artifact, the three groups were subjected to a second exercise trial one week after the first trial. This study confirmed the regression to the mean artifact in a redox biology context and showed that this artifact can be minimized by performing a duplicate pretreatment measurement after completing a nonrandom sorting based on the first assessment. This study also indicated that different individuals experience high oxidative stress or reductive stress (or no stress) to the same exercise stimulus even after adjusting for regression to the mean. This finding substantiates the methodological choice to divide individuals based on their degree of exercise-induced oxidative stress in future experiments to investigate the role of reactive species in exercise adaptations.  相似文献   

15.
16.
目的:探讨一次性力竭运动诱导的氧化应激反应对大鼠红细胞的抗氧化能力和细胞变形性的影响。方法:大鼠分为3组(n=10):对照组(Control)、适度运动组(MRE)和力竭运动组(ERE)。力竭运动组大鼠运动的前20 min保持5%的坡度和20 m/min的速度,20 min后调整为15%的坡度和25 m/min的速度,直至运动力竭。适度运动组大鼠在5%的坡度和20 m/min的速度下跑40 min。检测各组大鼠红细胞的抗氧化能力,并对氧化应激反应诱导的红细胞膜蛋白巯基水平、膜脂质过氧化水平和膜蛋白SDS-Page电泳条带变化进行了分析。通过激光衍射法对不同运动组大鼠红细胞变形性进行了检测。结果:力竭运动条件下大鼠红细胞受到严重的氧化应激损伤,红细胞内抗氧化能力下降。导致膜脂质过氧化损伤和膜蛋白巯基交联为主的蛋白聚簇化,形成高分子聚合物(HMW)。力竭组大鼠红细胞变形性(0.314±0.013 at 3 Pa and 0.534±0.009 at 30 Pa)显著低于对照组(0.41±0.01 at 3 Pa and 0.571±0.008 at 30 Pa;P0.05 and P0.01,respectively)和适度运动组。结论:力竭运动诱导的氧化损伤导致了红细胞变形能力(EI)的显著下降,使红细胞在微循环的转运受到限制,导致组织缺血缺氧进而引起休克、死亡等运动性疾病。  相似文献   

17.

Aims

This study sought to investigate the effects of physical detraining on blood pressure (BP) and cardiac morphology and function in hypertension, and on pro- and anti-inflammatory cytokines (PICs and AIC) and oxidative stress within the brain of hypertensive rats.

Methods and Results

Hypertension was induced in male Sprague-Dawley rats by delivering AngiotensinII for 42 days using implanted osmotic minipumps. Rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise (ExT) for 42 days, whereas, detrained groups underwent 28 days of exercise followed by 14 days of detraining. BP and cardiac function were evaluated by radio-telemetry and echocardiography, respectively. At the end, the paraventricular nucleus (PVN) was analyzed by Real-time RT-PCR and Western blot. ExT in AngII-infused rats caused delayed progression of hypertension, reduced cardiac hypertrophy, and improved diastolic function. These results were associated with significantly reduced PICs, increased AIC (interleukin (IL)-10), and attenuated oxidative stress in the PVN. Detraining did not abolish the exercise-induced attenuation in MAP in hypertensive rats; however, detraining failed to completely preserve exercise-mediated improvement in cardiac hypertrophy and function. Additionally, detraining did not reverse exercise-induced improvement in PICs in the PVN of hypertensive rats; however, the improvements in IL-10 were abolished.

Conclusion

These results indicate that although 2 weeks of detraining is not long enough to completely abolish the beneficial effects of regular exercise, continuing cessation of exercise may lead to detrimental effects.  相似文献   

18.
Free radicals and oxidative stress are involved in the pathogenic mechanisms of cardiovascular disease (CVD), diabetes and cancer. Exercise is a useful strategy for preventing CVD but in elderly persons it can enhance oxidative stress, which is why some studies recommend antioxidant supplementation for exercising elderly subjects. This intervention study was performed on 320 elderly subjects following a Geriatric Revitalization Program (GEREPRO) to maintain physical health and reduce CVD risk. GEREPRO was based on regular exercise concurrent with a nutritional antioxidant treatment based on daily intake of a functional antioxidant food, Biofrutas. Sustained exercise (10 months, 3 sessions/week) significantly increased cardiorespiratory fitness and plasma HDL-cholesterol; it reduced some predictors of cardiovascular risk (arterial pressure, LDL-cholesterol, total cholesterol/LDL-C, LDL-C/HDL-C), but significantly enhanced some biomarkers of oxidative stress. Concurrent antioxidant supplementation did not produce any ergogenic effects but, meaningfully, enhanced some positive effects of exercise on physical health and the CDV risk index, and it totally prevented the exercise-induced oxidative stress. Our results show that regular and moderate exercise improves cardiorespiratory function and reduces CVD risk in elderly people, while concurrent antioxidant supplementation modulates oxidative insult during exercise in the elderly and enhances the beneficial effects of exercise.  相似文献   

19.
The brain is highly susceptible to oxidative stress due to its high metabolic demand. Increased oxidative stress and depletion of glutathione (GSH) are observed with aging and many neurological diseases. Exercise training has the potential to reduce oxidative stress in the brain. In this study, nine healthy sedentary males (aged 25?±?4 years) undertook a bout of continuous moderate intensity exercise and a high-intensity interval (HII) exercise bout on separate days. GSH concentration in the anterior cingulate was assessed by magnetic resonance spectroscopy (MRS) in four participants, before and after exercise. This was a pilot study to evaluate the ability of the MRS method to detect exercise-induced changes in brain GSH in humans for the first time. MRS is a non-invasive method based on nuclear magnetic resonance, which enables the quantification of metabolites, such as GSH, in the human brain in vivo. To add context to brain GSH data, other markers of oxidative stress were also assessed in the periphery (in blood) at three time points [pre-, immediately post-, and post (~1?hour)-exercise]. Moderate exercise caused a significant decrease in brain GSH from 2.12?±?0.64?mM/kg to 1.26?±?0.36?mM/kg (p?=?.04). Blood GSH levels increased immediately post-HII exercise, 580?±?101?µM to 692?±?102 µM (n?=?9, p?=?.006). The findings from this study show that brain GSH is altered in response to acute moderate exercise, suggesting that exercise may stimulate an adaptive response in the brain. Due to the challenges in MRS methodology, this pilot study should be followed up with a larger exercise intervention trial.  相似文献   

20.
We analyzed adaptation mechanisms regulating systemic inflammatory response of the stressed body by using an experimental challenge of repeated exercise bouts and accompanying muscle inflammation. Eight untrained men bicycled at 90 W for 90 min, 3 days in a row. Exercise induced peripheral neutrophilia with a leftward shift of neutrophil nucleus and neutrophil priming for oxidative activity determined by luminol-dependent chemiluminescence. Plasma growth hormone and interleukin-6 rose significantly after exercise and were closely correlated with the neutrophil responses. Serum creatine kinase and myoglobin levels as muscle damage markers rose after exercise in "delayed onset" and were closely correlated with the preceding neutrophil responses. These exercise-induced responses were strongest on day 1, but the magnitude gradually decreased with progressive daily exercise. In contrast, the magnitude of catecholamine responses to exercise sessions gradually rose, possibly suppressing neutrophil oxidative responses. These results indicate that stress-induced systemic release of bioactive substances may determine neutrophil mobilization and functional status, which then may affect local tissue damage of susceptible organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号