首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
NMDA受体是兴奋性氨基酸谷氨酸(Glu)的特异性受体,属配体门控离子通道,是由不同的亚单位组成.现已发现,NMDA受体至少存在7个亚单位(NR1,NR2A-D,NR3A-B),其中NR2B在7个亚单位中扮演非常重要的角色.近年来对NR2B研究表明,其在调控神经元突触的可塑性、学习与记忆以及治疗精神紊乱方面具有重要的意义.对近期有关NR2B亚单位的结构、功能特性及其表达与调控的研究进展做一综述.  相似文献   

3.
Functional evenness is increasingly considered an important facet of functional diversity that sheds light on the complex relationships between community assembly and ecosystem functioning. Nonetheless, in spite of its relevant role for ecosystem functioning, only a few measures of functional evenness have been proposed. In this paper we introduce a new measure of functional evenness that reflects the regularity in the distribution of species abundances, together with the evenness in their pairwise functional dissimilarities. To show how the proposed measure works, we focus on changes in functional evenness calculated from Grime’s classification of plant strategies as competitors (C), stress-tolerators (S) and ruderals (R) along a post-fire successional gradient in temperate chestnut forests of southern Switzerland.  相似文献   

4.
5.
6.
Abstract

Membranes prepared from mammalian brain or intestine contain two types of specific binding sites for neurotensin that differ by their affinity and by their sensitivity to sodium ions, GTP, and the antihistamine drug levocabastine. Only the high affinity sites are present in cell cultures and in soluble extracts of CHAPS-treated membranes. These sites represent functional neurotensin receptors coupled to GTP-binding proteins that regulate intracellular levels of cAMP, cGMP and inositol phosphates in neuroblastoma N1E115 cells. The molecular weight of neurotensin receptors in cells and membrane preparations of various origin is about 110,000.  相似文献   

7.
Erythropoietin (EPO) is the principal hormone which, has somewhat short half-life involved in the differentiation and regulation of circulating red blood cells. The present study was carried out to evaluate the capability of a polyethylene glycol mimetic technology as a biological alternative to improve pharmaceutical properties of human recombinant EPO. In silico models of EPO fused to 200 amino acids of proline, alanine, and serine (PAS) were initially generated and assessed by molecular dynamic (MD) simulation. The fluctuations of the modeled structure reached a plateau after 6000 ps of MD simulation. The Phi and psi analysis showed >99.2% of residues were located in the allowed regions. An expression vector consisting of EPO cDNA tagged to PAS coding sequences was synthesized and expressed in CHO-K1 Cells. The produced PASylated molecule was purified and characterized by standard analytical methods. The molecular weight of fusion protein was expanded to 70 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis method. Analytical size exclusion chromatography revealed an approximately sevenfold increase in apparent size of produced protein. Although the in vitro potency of the fusion protein was significantly reduced (1.26?±?0.05 vs. 0.24?±?0.03 ng/ml) but, the in vivo activity was considerably increased up to 1.58?×?105 IU/ml in normocythemic mice assay. Pharmacokinetic animal studies revealed strongly 15.6-fold plasma half-life extension for the PASylated EPO (83.16?±?13.28 h) in comparison to epoetin α (8.5?±?2.4 h) and darbepoetin α (25.3?±?2.2h).  相似文献   

8.
9.
Although a majority of the key works on chromatin structure and function have been carried out using animal tissues, studies of plant chromatin and the characterization of the histones and nonhistone chromosomal proteins are now developing well. There are clear functional differences between plant and animal genomes, including the percentage of total DNA transcribed, levels of ploidy, and the pathways of morphogenesis and cell differentiation. It is therefore not surprising that differences are appearing between animal and plant chromatin, for example, the consensus amino acid sequence for the plant H3 globular domain; the extensions to the basic domain regions of some plant histones such as H2A, which have specific interactions with linker DNA; the larger molecular weight of the plant H1 molecule with its extended basic domains correlated with short lengths of linker DNA, and the absence of the five residue binding segment in the globular part of plant H1, which suggests differences in the organization of higher order structure in plant chromatin. There are also unifying features between plant and animal chromatin, and the nature of plant material makes its study particularly advantageous in several areas. The regular nucleosome repeat and short lengths of linker DNA in some plants should provide more regular order structures for study, in which in the near absence of linker DNA, nucleosome position is the main, if not sole, determining factor in model building. However, the improved characterization and isolation of plant chromatin and associated molecules, for example, the isolation of the SPKK kinase gene in pea, are essential if major progress is to be made in our understanding of functional activities.  相似文献   

10.
11.
12.
Calcium (Ca) sparks are the fundamental sarcoplasmic reticulum (SR) Ca release events in cardiac myocytes, and they have a typical duration of 20–40 ms. However, when a fraction of ryanodine receptors (RyRs) are blocked by tetracaine or ruthenium red, Ca sparks lasting hundreds of milliseconds have been observed experimentally. The fundamental mechanism underlying these extremely prolonged Ca sparks is not understood. In this study, we use a physiologically detailed mathematical model of subcellular Ca cycling to examine how Ca spark duration is influenced by the number of functional RyRs in a junctional cluster (which is reduced by tetracaine or ruthenium red) and other SR Ca handling properties. One RyR cluster contains a few to several hundred RyRs, and we use a four-state Markov RyR gating model. Each RyR opens stochastically and is regulated by cytosolic and luminal Ca. We varied the number of functional RyRs in the single cluster, diffusion within the SR network, diffusion between network and junctional SR, cytosolic Ca diffusion, SERCA uptake activity, and RyR open probability. For long-lasting Ca release events, opening events within the cluster must occur continuously because the typical open time of the RyR is only a few milliseconds. We found the following: 1) if the number of RyRs is too small, it is difficult to maintain consecutive openings and stochastic attrition terminates the release; 2) if the number of RyRs is too large, the depletion of Ca from the junctional SR terminates the release; and 3) very long release events require relatively small-sized RyR clusters (reducing flux as seen experimentally with tetracaine) and sufficiently rapid intra-SR Ca diffusion, such that local junctional intra-SR [Ca] can be maintained by intra-SR diffusion and overall SR Ca reuptake.  相似文献   

13.
14.
A peptide antibiotic with cyanolytic activity was isolated from the IGM52 strain of the Brevibacillus laterosporus Gram-positive spore-forming bacteria. By 1H NMR spectroscopy, this antibiotic was identified as loloatin A, a cyclic decapeptide cyclo(-Asn-Asp-Tyr-Val-Orn-Leu-D-Tyr-Pro-Phe-D-Phe-). The spatial structure of loloatin A in solution was determined.  相似文献   

15.
The exopolysaccharide succinoglycan is produced mainly by a large number of soil microbes of Agrobacterium, Rhizobium or Pseudomonas genera etc. Structural properties of succinoglycan are unique in terms of its thermal stability and superior viscosifying property. Unlike the other highly commercialized bacterial exopolysaccharides like dextran or xanthan, mass scale application of succinoglycan has not been that much broadly explored yet. Bacterial succinoglycan is found suitable as a viscosifying and emulsifying agent in food industry, in gravel packing or fluid-loss control agent etc. In this present review, the key aspects of succinoglycan study, in particular, developments in structural characterizations, exo/exs operon system involved in biosynthesis pathway, commercial applications in food and other industries and patenting trends have been discussed.  相似文献   

16.
Plant growth under low K+ availability or salt stress requires tight control of K+ and Na+ uptake, long-distance transport, and accumulation. The family of membrane transporters named HKT (for High-Affinity K+ Transporters), permeable either to K+ and Na+ or to Na+ only, is thought to play major roles in these functions. Whereas Arabidopsis (Arabidopsis thaliana) possesses a single HKT transporter, involved in Na+ transport in vascular tissues, a larger number of HKT transporters are present in rice (Oryza sativa) as well as in other monocots. Here, we report on the expression patterns and functional properties of three rice HKT transporters, OsHKT1;1, OsHKT1;3, and OsHKT2;1. In situ hybridization experiments revealed overlapping but distinctive and complex expression patterns, wider than expected for such a transporter type, including vascular tissues and root periphery but also new locations, such as osmocontractile leaf bulliform cells (involved in leaf folding). Functional analyses in Xenopus laevis oocytes revealed striking diversity. OsHKT1;1 and OsHKT1;3, shown to be permeable to Na+ only, are strongly different in terms of affinity for this cation and direction of transport (inward only or reversible). OsHKT2;1 displays diverse permeation modes, Na+-K+ symport, Na+ uniport, or inhibited states, depending on external Na+ and K+ concentrations within the physiological concentration range. The whole set of data indicates that HKT transporters fulfill distinctive roles at the whole plant level in rice, each system playing diverse roles in different cell types. Such a large diversity within the HKT transporter family might be central to the regulation of K+ and Na+ accumulation in monocots.Although it is not clear what levels of Na+ are toxic in the plant cell cytosol and actually unacceptable in vivo, the hypothesis that this cation must be excluded from the cytoplasm is widely accepted. The most abundant inorganic cation in the cytosol is K+, in plant as in animal cells. This cation has probably been selected during evolution because it is less chaotropic than Na+ (i.e. more compatible with protein structure even at high concentrations; Clarkson and Hanson, 1980). Its selection might also be due to the fact that in primitive cells, which originated in environmental conditions (seawater) where Na+ was more abundant than K+, a straightforward process to energize the cell membrane was to accumulate the less abundant cation and to exclude the most abundant one.In the cell, K+ plays a role in basic functions, such as regulation of cell membrane polarization, electrical neutralization of anionic groups, and osmoregulation. Concerning the latter function, K+ uptake or release is the usual way through which plant cells control their water potential and turgor. Although toxic at high concentrations, Na+ can be used as osmoticum and substituted for K+, mainly in the vacuole, when the plant is facing low K+ conditions and Na+ is available in the soil solution. This use of Na+, however, requires a tight regulation of K+ and Na+ transport and compartmentalization that becomes crucial in conditions of high Na+ concentrations in the soil solution. Control of Na+ and K+ uptake, long-distance transport in the xylem and phloem vasculatures, accumulation in aerial parts, and compartmentalization at the cellular and tissue levels have actually been shown to be essential in plant adaptation to salt stress (Greenway and Munns, 1980; Flowers, 1985; Hasegawa et al., 2000; Mühling and Läuchli, 2002). Thus, accumulation of Na+ as osmoticum during K+ shortage or plant adaptation to salt stress requires integration at the whole plant level of Na+ and K+ membrane transport system activities (Apse et al., 1999; Shi et al., 2002; Qi and Spalding, 2004; Ren et al., 2005; Maathuis, 2006; Pardo et al., 2006; Horie et al., 2007).This report concerns transport systems named HKT upon first identification (for High-Affinity K+ Transporters) that are active at the plasma membrane and permeable to either K+ and Na+ or to Na+ only (Schachtman and Schroeder, 1994; Rodríguez-Navarro and Rubio, 2006). Several members of the HKT family have already been shown, by genetic approaches, to play important roles in plant salt tolerance (Berthomieu et al., 2003; Ren et al., 2005; Huang et al., 2006; Byrt et al., 2007) or growth in conditions of K+ shortage (Horie et al., 2007). In Arabidopsis (Arabidopsis thaliana), the HKT family comprises a single member, AtHKT1;1, which is permeable to Na+ only (Uozumi et al., 2000) and contributes to Na+ removal from the ascending xylem sap and recirculation from the leaves to the roots via the phloem vasculature (Berthomieu et al., 2003; Sunarpi et al., 2005). Interestingly, the HKT family comprises a much larger number of members in rice (Oryza sativa), with seven to nine genes depending on the cultivar (Garciadeblás et al., 2003). In line with previous reports using rice as a model species to decipher the roles that HKT transporters can play in the plant, we have analyzed the expression patterns of three rice HKT genes, OsHKT2;1, OsHKT1;1, and OsHKT1;3, and investigated the functional properties of these transporters after heterologous expression, revealing new patterns of expression for HKT transporters and striking functional diversity.  相似文献   

17.
在人肺癌表面细胞株A-549中检测到佛波酯诱导的丁醇化鞘脂分子的产生。用[^3H]-丝氨酸标记细胞,其放射性在磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺极性头部的分布很容易被检测到,而在磷脂酸及其直接代谢衍生物中并不存在,提示这种磷脂酶D的酶解产物来源于鞘脂分子的水解,而不同于以甘油磷脂为底物的磷脂酶D的酶解产物。蛋白激酶C的抑制剂或通过佛波酯长时间处理下调细胞内蛋白激酶C水平,可抑制佛波酯诱导的丁酯化鞘脂分子的产生,表明导致这种磷脂酶D的活化需要蛋白激酶C的参与。  相似文献   

18.
Abstract

NMR spectroscopy was used to determine the solution structures of RNA oligonucleotides comprising the anticodon domain of tRNALys,3. The structural effects of the pseudouridine modification at position 39 were investigated and are well correlated with changes in thermodynamic parameters. The loop conformation differs from that seen in tRNAPhe and provides an explanation of the critical role of modification in this tRNA.  相似文献   

19.
20.
We screened a protoberberine backbone derivative library for compounds with anti-proliferative effects on p53-defective cancer cells. A compound identified from this small molecule library, cadein1 (cancer-selective death inducer 1), an isoquinolinium derivative, effectively leads to a G2/M delay and caspase-dependent apoptosis in various carcinoma cells with non- functional p53. The ability of cadein1 to induce apoptosis in p53-defective colon cancer cells was tightly linked to the presence of a functional DNA mismatch repair (MMR) system, which is an important determinant in chemosensitivity. Cadein1 was very effective in MMR+/p53 cells, whereas it was not effective in p53+ cells regardless of the MMR status. Consistently, when the function of MMR was blocked with short hairpin RNA in SW620 (MMR+/p53) cells, cadein1 was no longer effective in inducing apoptosis. Besides, the inhibition of p53 increased the pro-apoptotic effect of cadein1 in HEK293 (MMR+/p53+) cells, whereas it did not affect the response to cadein1 in RKO (MMR/p53+) cells. The apoptotic effects of cadein1 depended on the activation of p38 but not on the activation of Chk2 or other stress-activated kinases in p53-defective cells. Taken together, our results show that cadein1 may have a potential to be an anti-cancer chemotherapeutic agent that is preferentially effective on p53-mutant colon cancer cells with functional MMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号