首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As C-Xyloside has been suggested to be an initiator of glycosaminoglycan (GAG) synthesis, and GAGs such as Dermatan sulfate (DS) are potent enhancers of fibroblast growth factor (FGF)--10 action, we investigated if a C-Xylopyranoside derivative, (C-β-D-xylopyranoside-2-hydroxy-propane, C-Xyloside), could promote DS production by cultured normal human keratinocytes, how this occurs and if C-Xyloside could also stimulate FGF-dependent cell migration and proliferation. C-Xyloside-treated keratinocytes greatly increased secretion of total sulfated GAGs. Majority of the induced GAG was chondroitin sulfate/dermatan sulfate (CS/DS) of which the major secreted GAG was DS. Cells lacking xylosyltransferase enzymatic activity demonstrated that C-Xyloside was able to stimulate GAG synthesis without addition to core proteins. Consistent with the observed increase in DS, keratinocytes treated with C-Xyloside showed enhanced migration in response to FGF-10 and secreted into their culture media GAGs that promoted FGF-10-dependent cellular proliferation. These results indicate that C-Xyloside may enhance epithelial repair by serving as an initiator of DS synthesis.  相似文献   

2.
3.
《Developmental neurobiology》2017,77(12):1401-1412
In the brain, the extracellular matrix (ECM) plays a central role during neural development and thus modulates critical‐period regulated behavioral ontogeny. The major components of the ECM are glycosaminoglycans (GAGs) including chondroitin sulfate (CS). However, the specific roles of GAGs in behavioral development are largely unknown. It has been shown that xylosides affect the biological functions of GAGs through modulating GAG biosynthesis. Particularly, xylosides affect GAG biosynthesis through priming of GAG chains (priming activity), competing with endogenous core proteins that carry GAG initiation sites (decoy activity), or both. Using birdsong as our model, we investigated, for the first time, how xyloside‐mediated modulation of GAG biogenesis affects song development. Xylosides infused into motor cortex of juvenile birds alter song development by specifically affecting ontogeny of the stereotyped sequence rather than the acoustic structure of syllables. Further analyses reveal that observed changes can be attributed to the priming activity rather than the decoy activity of xylosides. Collectively, these results suggest that regulation of GAG biogenesis through chemical biology approaches may allow promising therapeutic interventions of critical‐period‐dependent central nervous system plasticity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1401–1412, 2017  相似文献   

4.
Glycosaminoglycans [GAGs] are essential heteropolysaccharides in vertebrate tissues that are also, in certain cases, employed as virulence factors by microbes. Hyaluronan [HA], heparin, and chondroitin sulfate [CS] are GAGs currently used in various medical applications and together are multi-billion dollar products thus targets for production by animal-free manufacture. By using bacteria as the source of GAGs, the pathogen’s sword may be converted into a plowshare to help avoid potential liabilities springing from the use of animal-derived GAGs including adventitious agents (e.g., prions, pathogens), antigenicity, degradation of the environment, and depletion of endangered species. HA from microbes, which have a chemical structure identical to human HA, has already been commercialized and sold at the ton-scale. Substantial progress towards microbial heparin and CS has been made, but these vertebrate polymers are more complicated structurally than the unsulfated bacterial polysaccharide precursors thus require additional processing steps. This review provides an overview of GAG structure, medical applications, microbial biosynthesis, and the state of bacterial GAG production systems. Representatives of all glycosyltransferase enzymes that polymerize the sugar chains of the three main GAGs have been identified and serve as the core technology to harness, but the proteins involved in sugar precursor formation and chain export steps of biosynthesis are also essential to the GAG production process. In addition, this review discusses future directions and potential important issues. Overall, this area is poised to make great headway to produce safer (both increased purity and more secure supply chains) non-animal GAG-based therapeutics.  相似文献   

5.
Glycosaminoglycans (GAGs) are linear polysaccharides, consisting of repeated disaccharide units, attached to core proteins in all multicellular organisms. Chondroitin sulfate (CS) and dermatan sulfate (DS) constitute a subgroup of sulfated GAGs for which the degree of sulfation varies between species and tissues. One major goal in GAG characterization is to correlate structure to function. A common approach is to exhaustively degrade the GAG chains and thereafter determine the amount of component disaccharide units. In large-scale studies, there is a need for high-throughput screening methods since existing methods are either very time- or samples consuming. Here, we present a new strategy applying MALDI-TOF MS in positive ion mode for semi-qualitative and quantitative analysis of CS/DS derived disaccharide units. Only a few picomoles of sample are required per analysis and 10 samples can be analyzed in 25 min, which makes this approach an attractive alternative to many established assay methods. The total CS/DS concentration in 19 samples derived from Caenorhabditis elegans and mammalian tissues and cells was determined. The obtained results were well in accordance with concentrations determined by a standard liquid chromatography-based method, demonstrating the applicability of the method for samples from various biological matrices containing CS/DS of different sulfation degrees.  相似文献   

6.
Proteoglycans (PGs) from cornea and their relevant glycosaminoglycan (GAG) chains, dermatan sulphate (DS) and keratin sulphate (KS), were examined by electron microscopy following rotary shadowing, and compared with hyaluronan (HA), chondroitin sulphate (CS), alginate, heparin, heparan sulphate (HS) and methyl cellulose. Corneal DS PG had the tadpole shape previously seen in scleral DS FG, and the images from corneal KS PG could be interpreted similarly, although the GAG (KS) chains were very much fainter than those of DS PG GAG. Isolated GAG (KS, DS, CS, HA, etc.) examined in the same way showed images that decreased very significantly in clarity and contrast, in the sequence HA greater than DS greater than CS greater than KS. The presence of secondary and tertiary structures in the GAGs may be at least partly responsible for these variations. HA appeared to be double stranded, and DS frequently self-aggregated, KS and HS showed tendencies to coil into globular shapes. It is concluded that it is unsafe to assume the absence of GAGs, based on these techniques, and quantitative measurements of length may be subject to error. The results on corneal DS PG confirm and extend the hypothesis that PGs specifically associated with collagen fibrils are tadpole shaped.  相似文献   

7.
Chondroitin/dermatan sulphate (CS/DS) sulphation motifs on cell and extracellular matrix proteoglycans (PGs) within stem/progenitor cell niches are involved in modulating cell phenotype during the development of many musculoskeletal connective tissues. Here, we investigate the importance of CS/DS chains and their motifs in the chondrogenic differentiation of bone marrow mesenchymal stem cells (bMSCs), using p-nitrophenyl xyloside (PNPX) as a competitive acceptor of CS/DS substitution on PGs. Comparison of cultures grown in control chondrogenic medium, with those grown in the presence of PNPX showed that PNPX delayed the onset of chondrogenesis, characterised by cell rounding and aggregation into spheroidal beads. PNPX reduced gene expression of SOX-9, aggrecan and collagen type II, and caused reduced levels of collagen type II protein. PNPX-treated cultures also showed delayed expression of a native CS/DS sulphation motif epitope recognised by antibody 6C3. This epitope appeared associated with a range of PGs, particularly biglycan, and its close association was lost after PNPX treatment. Overall our data show that perturbation of PG glycosylation with CS/DS GAGs using PNPX significantly delays the onset of chondrogenic differentiation of bMSCs, highlighting the importance of CS/DS during the initial stages of chondrogenesis. The delayed expression of the CS/DS sulphation motif recognised by 6C3 suggests that this motif, in particular, may have early involvement in chondrogenesis. The mechanism(s) by which CS/DS chains on PGs contribute to early chondrogenic events is unknown; however, they may be involved in morphogenetic signalling through the capture and cellular presentation of soluble bioactive molecules (e.g. growth factors).  相似文献   

8.
Proteoglycans (PGs) are important macromolecules in mammalian cells, consisting of a core protein substituted with carbohydrate chains, known as glycosaminoglycans (GAGs). Simple xylosides carrying hydrophobic aglycons can enter cells and act as primers for GAG chain synthesis, independent of the core protein. Previously it has been shown that aromatic aglycons can be separated from the sugar residue by short linkers without affecting the GAG priming ability. To further investigate the effects of the xylose–aglycon distance on the GAG priming ability, we have synthesized xyloside derivatives with 2-naphthyl and 2-(6-hydroxynaphthyl) moieties connected to xylose, directly, via a methylene bridge, or with oligoethylene glycol linkers of three different lengths. The GAG priming ability and the antiproliferative activity of the xylosides, as well as the composition of the xyloside-primed GAG chains were investigated in a matched pair of human breast fibroblasts and human breast carcinoma cells. An increase of the xylose–aglycon distance from 0.24 to 0.37 nm resulted in an increased GAG priming ability in both cell lines. Further increase of the xylose–aglycon distance did not result in any pronounced effects. We speculate that by increasing the xylose–aglycon distance, and thereby the surface area of the xyloside, to a certain level would make it more accessible for enzymes involved in the GAG synthesis. The compositions of the primed GAG chains varied with different xylosides, independent of the xylose–aglycon distance, probably due to various affinities for enzymes and/or different cellular uptake. Furthermore, no correlations between the antiproliferative activities, the xylose–aglycon distances, and the amounts or compositions of the GAG chains were detected suggesting involvement of other factors such as fine structure of the GAG chains, effects on endogenous PG synthesis, or other unknown factors for the antiproliferative activity.  相似文献   

9.
In the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high-resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14-week-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was assessed comparatively. The analyses indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, whereas the younger brain was found to be characterized by a higher sulfation of CS-rich regions. By multistage MS using collision-induced dissociation, we also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties.  相似文献   

10.
Glycosaminoglycans (GAGs) in proteoglycan (PG) forms or as free GAGs are implicated in the growth and progression of malignant tumors. These macromolecules were investigated in human gastric carcinoma (HGC) and compared with those in human normal gastric mucosa (HNG). We report that HGC contained about 2-fold increased amounts of GAGs in comparison to HNG. Specifically, HGC showed 3- and 2.5-fold net increase in chondroitin sulphate (CS) and hyaluronan (HA) contents, respectively. Dermatan sulphate (DS) was slightly increased, but the amount of heparan sulphate (HS) was decreased. Of particular, interest were the quite different sulphation profiles of CS and DS chains in HGC in which, non-sulphated and 6-sulphated disaccharide units were increased 10 and 4 times, respectively, in comparison to HNG. On PG level, three different populations were identified in both HNG and HGC, being HSPGs, versican (CS/DS chains) and decorin (CS/DS chains). In HGC, the amounts of versican and decorin were significantly increased about 3- and 8-fold, respectively. These PGs were also characterized by marked decrease in hydrodynamic size and GAG content per PG molecule. Analysis of Delta-disaccharide of versican and decorin from HGC showed an increase of 6-sulphated Delta-disaccharides (Delta di-6S) and non-sulphated Delta-disaccharides (Delta di-0S) with a parallel decrease of 4-sulphated Delta-disaccharides (Delta di-4S) as compared to HNG, which closely correlated with the increase of CS content. In addition, the accumulation of core proteins of versican and decorin in HGC was also associated with many post-translational modifications, referring to the number, size, degree and patterns of sulphation and epimerization of CS/DS chains. Studies on the modified metabolism of PGs/GAGs are under progress and will help in deeper understanding of the environment in which tumor cells proliferate and invade.  相似文献   

11.
The type, amount and fine chemical composition of glycosaminoglycans (GAGs) present both in human normal myometrium and uterine leiomyoma have been studied. GAGs were fractionated by ion-exchange chromatography on DEAE-Sephacel, isolated by gel-permeation chromatography on Sepharose CL-6B and characterized using electrophoresis in cellulose acetate membranes, specific enzymic treatments and analysis by high-performance capillary electrophoresis (HPCE). No statistical intrabatch differences in total GAG content in both tissues were identified, whereas significant interbatch differences between normal myometrium and uterine leiomyoma were recorded. Hyaluronan (HA), chondroitin sulphate (CS), dermatan sulphate (DS), heparan sulphate (HS) and keratan sulphate (KS) were identified in both tissues. Statistically significant (P 相似文献   

12.
Glycosaminoglycans (GAGs) form a functional component of connective tissues that affect the structural and functional integrity of the lower urinary tract (LUT). The specific GAGs of physiological relevance are both nonsulfated (hyaluronan) and sulfated GAGs (chondroitin sulphate [CS], dermatan sulphate [DS], keratan sulphate [KS], and heparan sulphate [HS]). As GAG composition in the LUT is hormonally regulated, we postulated that gonadectomy-induced endocrine imbalance alters the profile of GAGs in the canine LUT. Four regions of the LUT (body and neck of the bladder as well as the proximal and distal urethra) from 20 clinically healthy dogs (5 intact males, 5 intact anoestrus females, 4 castrated males, and 6 spayed females) were collected, wax-embedded and sectioned. Alcian blue staining at critical electrolyte concentrations was performed on the sections to determine total GAGs, hyaluronan, total sulfated GAGs, combined components of CS and DS, as well as KS and HS. The amount of staining was evaluated in 3 tissue layers, i.e., epithelium, subepithelial stroma and muscle within a region. Overall, hyaluronan (67.1%) was the predominant GAG in the LUT. Among sulfated GAGs, a combined component of KS and HS was found to be 61.8% and 38.2% for CS and DS. Gonadal status significantly affected GAG profiles in the LUT (P < 0.01). All GAG components were lower (P < 0.05) in body of the bladder of gonadectomized dogs. Total sulfated GAGs and a combined component of KS and HS were lower (P < 0.05) in all 4 regions of gonadectomized dogs. Except for a combined component of CS and DS, decreases in all GAGs were found more consistently in the muscle compared to other tissue layers. Differences between genders became obvious only when considered along with the effect of gonadal status. In gonadectomized dogs, changes in GAG components in the LUT were more consistent in females compared to males; this may partly explain different levels of risk in the development of urinary incontinence between genders. Quantitative differences in GAG profiles found between intact and gonadectomized dogs indicate a potential role of gonadectomy-induced endocrine imbalance in modifying GAG composition in the canine LUT. Profound alteration in the pattern of GAGs in gonadectomized dogs may compromise structural and functional integrity of the LUT and is possibly involved in the underlying mechanism of urinary incontinence post neutering.  相似文献   

13.
Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG–ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.  相似文献   

14.
The role of glycosaminoglycans (GAGs) in the branching morphogenesis of embryonic mouse salivary glands was investigated by culturing the glands in the presence of xylose derivatives which stimulate synthesis of the xyloselinked classes of GAGs. Branching morphogenesis is inhibited severely, but reversibly, by 0.5–1.0 mM π-nitrophenyl-β-d-xylopyranoside and the inhibition correlates with a stimulation of incorporation of [3H]glucosamine (1.8-fold) and [35S]sulfate (almost 3-fold) into GAGs. The effect of β-xyloside on accumulation of newly synthesized GAG also occurs in the presence of the protein synthesis inhibitor cycloheximide, suggesting that the production of free GAG chains rather than proteoglycan-associated GAGs is being stimulated. The xyloside effects apparently do not result from general cytotoxicity of the derivatives, since similar concentrations of the α-anomer do not alter salivary branching or GAG synthesis, the rudiments resume morphogenesis when returned to control medium, and the effect on GAG synthesis is stimulatory rather than inhibitory. The study suggests that GAG biosynthesis plays an important role in salivary development, and that xylosides provide useful probes for characterizing the molecular events controlling branching morphogenesis.  相似文献   

15.
The sulphation patterns of glycosaminoglycan (GAG) chains are decisive for the biological activity of their proteoglycan (PG) templates for sugar chain polymerization and sulphation. The amounts and positions of sulphate groups are often determined by HPLC analysis of disaccharides resulting from enzymatic degradation of the GAG chains. While heparan sulphate (HS) and heparin are specifically degraded by heparitinases, chondroitinases not only degrade chondroitin sulphate (CS) and dermatan sulphate (DS), but also the protein-free and unsulphated GAG hyaluronan (HA). Thus, disaccharide preparations derived by chondroitinase degradation may be contaminated by HA disaccharides. The latter will often comigrate in HPLC chromatograms with unsulphated disaccharides derived from CS. We have investigated how variation of pH, amount of enzyme, and incubation time affects disaccharide formation from CS and HA GAG chains. This allowed us to establish conditions where chondroitinase degrades CS completely for quantification of all the resulting disaccharides, with negligible degradation of HA, allowing subsequent HA analysis. In addition, we present simple methodology for disaccharide analysis of small amounts of CS attached to a hybrid PG carrying mostly HS after immune isolation. Both methods are applicable to small amounts of GAGs synthesized by polarized epithelial cells cultured on permeable supports.  相似文献   

16.
Homeostasis of connective joint tissues depends on the maintenance of an extracellular matrix, consisting of an integrated assembly of collagens, glycoproteins, proteoglycans, and glycosaminoglycans (GAGs). Isomeric chondroitin sulfate (CS) glycoforms differing in position and degree of sulfation and uronic acid epimerization play specific and distinct functional roles during development and disease onset. This work profiles the CS epitopes expressed by different joint tissues as a function of age and osteoarthritis. GAGs were extracted from joint tissues (cartilage, tendon, ligment, muscle, and synovium) and partially depolymerized using chondroitinase enzymes. The oligosaccharide products were differentially stable isotope labeled by reductive amination using 2-anthranilic acid-d(0) or -d(4) and subjected to amide-hydrophilic interaction chromatography (HILIC) online LC-MS/MS. The analysis presented herein enables simultaneous profiling of the expression of nonreducing end, linker region, and Delta-unsaturated interior oligosaccharide domains of the CS chains among the different joint tissues. The results provide important new information on the changes to the expression of CS GAG chains during disease and development.  相似文献   

17.
The chondroitin sulfate/dermatan sulfate proteoglycans (CS/DSPGs) of the human umbilical cord vein, arteries and Wharton's jelly matrices were characterized and localized by immunohistochemical analysis. The CS/DSPGs were found to be decorins and biglycans with 43-48 kDa core proteins and are distributed throughout the umbilical cord. A truncated form of decorin having only the approximately 14 kDa NH(2)-terminal portion of the core protein was found exclusively in the vein. The proteoglycans, regardless of their locations, have two types of CS/DS chains, one with approximately 90% CS and approximately 10% DS and the other with approximately 65% CS and approximately 35% DS. The glycosaminoglycan (GAG) chains of the truncated decorin consist of approximately 53% CS and approximately 47% DS. Both decorin and biglycan including the truncated form of decorin could efficiently bind collagen I and fibronectin. The decorin and biglycan with approximately 10% DS and approximately 90% CS were loosely bound in the extracellular matrices, whereas those with approximately 35% DS bound strongly. Together, these data demonstrate that, the GAG chains with 35-47% DS but not those with 10% DS, interact strongly with the matrix. Our data also show that the GAG chain composition is a significant factor in binding of the decorin and biglycan to matrix proteins. The expression of decorin and biglycan with distinctively different CS/DS proportions implies specific biological functions for these PGs in the umbilical cord. The occurrence of the truncated form of decorin exclusively in the umbilical vein suggests a specific functional role.  相似文献   

18.
Pulmonary fibrosis (PF) is characterized by increased deposition of proteoglycans (PGs), in particular core proteins. Glycosaminoglycans (GAGs) are key players in tissue repair and fibrosis, and we investigated whether PF is associated with changes in the expression and structure of GAGs as well as in the expression of β1,3-glucuronosyltransferase I (GlcAT-I), a rate-limiting enzyme in GAG synthesis. Lung biopsies from idiopathic pulmonary fibrosis (IPF) patients and lung tissue from a rat model of bleomycin (BLM)-induced PF were immunostained for chondroitin sulfated-GAGs and GlcAT-I expression. Alterations in disaccharide composition and sulfation of chondroitin/dermatan sulfate (CS/DS) were evaluated by fluorophore-assisted carbohydrate electrophoresis (FACE) in BLM rats. Lung fibroblasts isolated from control (saline-instilled) or BLM rat lungs were assessed for GAG structure and GlcAT-I expression. Disaccharide analysis showed that 4- and 6-sulfated disaccharides were increased in the lungs and lung fibroblasts obtained from fibrotic rats compared with controls. Fibrotic lung fibroblasts and transforming growth factor-β(1) (TGF-β(1))-treated normal lung fibroblasts expressed increased amounts of hyaluronan and 4- and 6-sulfated chondroitin, and neutralizing anti-TGF-β(1) antibody diminished the same. TGF-β(1) upregulated GlcAT-I and versican expression in lung fibroblasts, and signaling through TGF-β type I receptor/p38 MAPK was required for TGF-β(1)-mediated GlcAT-I and CS-GAG expression in fibroblasts. Our data show for the first time increased expression of CS-GAGs and GlcAT-I in IPF, fibrotic rat lungs, and fibrotic lung fibroblasts. These data suggest that alterations of sulfation isomers of CS/DS and upregulation of GlcAT-I contribute to the pathological PG-GAG accumulation in PF.  相似文献   

19.
Proteoglycan biosynthesis by chick embryo retina glial-like cells   总被引:1,自引:0,他引:1  
In this report we present biochemical evidence that purified cultures of chick embryo retina glial-like cells actively synthesize heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans as well as hyaluronic acid. Glial-like cell cultures were metabolically labeled with [3H]glucosamine and 35SO4, and the medium, cell layer, and substratum-bound fractions were analyzed separately. Proteoglycans were characterized according to charge, apparent molecular size, and glycosaminoglycan (GAG) composition and were found to be differentially distributed among the cellular compartments. HS was the predominant GAG overall and was the major species found in the cell layer and substratum-bound fractions. CS/DS was also present in each fraction and comprised the largest proportion of GAGs in the medium. The major GAG-containing material resolved into three different size classes. The first, found in the cell layer and substratum-bound fractions, contained both CS/DS and HS and was of large size. A second, intermediately sized class with a higher CS/DS:HS ratio was found in the medium. The smallest class was found in the cell layer fraction and comprised HS, most likely present as free GAG chains. In addition, each fraction contained hyaluronic acid. Characteristics of these macromolecules differ from those produced by purified cultures of chick embryo retina neurons and photoreceptors in terms of size, compartmental distribution, and presence of hyaluronic acid.  相似文献   

20.
The composition and the distribution of glycosaminoglycans (GAGs) present in normal human nasal cartilage (HNNC), were examined and compared with those in human scoliotic nasal cartilage (HSNC). In both tissues, hyaluronan (HA), keratan sulfate (KS) and the galactosaminoglycans (GalAGs)--chondroitin sulfate (CS) and dermatan sulfate (DS)--were identified. The overall GAG content in HSNC was approx. 30% higher than the HNNC. Particularly, a 114% increase in HA, and 46% and 86% in KS and DS, respectively, was recorded. CS was the main type of GAG in both tissues with no significant compositional difference. GalAG chains in HSNC exhibited an altered disaccharide composition which was associated with significant increases of non-sulfated and 6-sulfated disaccharides. DS, which was identified and quantitated for the first time in HNNC and HSNC, contained low amounts of iduronic acid (IdoA), 18% and 28% respectively. In contrast to other tissues, where IdoA residues are organized in long IdoA rich repeats, the IdoA residues of DS in human nasal cartilage seemed to be randomly distributed along the chain. DS chains in HSNC were of larger average molecular size than those from HNNC. These results clearly indicate the GAG content and pattern in both HNNC and HSNC and demonstrate that scoliosis of nasal septum cartilage is related to quantitative and structural modifications at the GAG level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号