首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vibrio cholerae isolates responsible for cholera pandemics represent only a small portion of the diverse strains belonging to this species. Indeed, most V. cholerae are encountered in aquatic environments. To better understand the emergence of pandemic lineages, it is crucial to discern what differentiates pandemic strains from their environmental relatives. Here, we studied the interaction of environmental V. cholerae with eukaryotic predators or competing bacteria and tested the contributions of the haemolysin and the type VI secretion system (T6SS) to those interactions. Both of these molecular weapons are constitutively active in environmental isolates but subject to tight regulation in the pandemic clade. We showed that several environmental isolates resist amoebal grazing and that this anti-grazing defense relies on the strains' T6SS and its actincross-linking domain (ACD)-containing tip protein. Strains lacking the ACD were unable to defend themselves against grazing amoebae but maintained high levels of T6SS-dependent interbacterial killing. We explored the latter phenotype through whole-genome sequencing of 14 isolates, which unveiled a wide array of novel T6SS effector and (orphan) immunity proteins. By combining these in silico predictions with experimental validations, we showed that highly similar but non-identical immunity proteins were insufficient to provide cross-immunity among those wild strains.  相似文献   

3.
BackgroundA prevailing action of the Type VI secretion system (T6SS) in several Gram-negative bacterial species is inter-bacterial competition. In the past several years, many effectors of T6SS were identified in different bacterial species and their involvement in inter-bacterial interactions were described. However, possible defence mechanisms against T6SS attack among prey bacteria were not well clarified yet.MethodsEscherichia coli was assessed for susceptibility to T6SS-mediated killing by Vibrio cholerae. TheT6SS-mediated bacterial killing assays were performed in absence or presence of different protease inhibitors and with different mutant E. coli strains. Expression levels of selected proteins were monitored using SDS-PAGE and immunoblot analyses.ResultsThe T6SS-mediated killing of E. coli by V. cholerae was partly blocked when the serine protease inhibitor Pefabloc was present. E. coli lacking the periplasmic protease inhibitor Ecotin showed enhanced susceptibility to killing by V. cholerae. Mutations affecting E. coli membrane stability also caused increased susceptibility to killing by V. cholerae. E. coli lacking the maltodextrin porin protein LamB showed reduced susceptibility to killing by V. cholerae whereas E. coli with induced high levels of LamB showed reduced survival in inter-bacterial competition.ConclusionsOur study identified two proteins in E. coli, the intrinsic protease inhibitor Ecotin and the outer membrane porin LamB, that influenced E. coli susceptibility to T6SS-mediated killing by V. cholerae.General significanceWe envision that it is feasible to explore these findings to target and modulate their expression to obtain desired changes in inter-bacterial competition in vivo, e.g. in the gastrointestinal microbiome.  相似文献   

4.
Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.  相似文献   

5.
The type VI secretion system (T6SS) is a proteinaceous weapon used by many Gram-negative bacteria to deliver toxins into adjacent target cells. Vibrio cholerae, the bacterium responsible for the fatal water-borne cholera disease, uses the T6SS to evade phagocytic eukaryotes, cause intestinal inflammation, and compete against other bacteria with toxins that disrupt lipid membranes, cell walls and actin cytoskeletons. The control of T6SS genes varies among V. cholerae strains and typically includes inputs from external signals and cues, such as quorum sensing and chitin availability. In the following review, we highlight the repertoire of toxic T6SS effectors and the diverse genetic regulation networks among different isolates of V. cholerae. Finally, we discuss the roles played by the T6SS of V. cholerae in both natural environments and hosts.  相似文献   

6.
7.
The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen’s arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.  相似文献   

8.
Twelve Vibrio cholerae isolates with genes for a type III secretion system (T3SS) were detected among 110 environmental and 14 clinical isolates. T3SS‐related genes were distributed among the various serogroups and pulsed‐field gel electrophoresis of NotI‐digested genomes showed genetic diversity in these strains. However, the restriction fragment length polymorphism profiles of the T3SS‐related genes had similar patterns. Additionally, naturally competent T3SS‐negative V. cholerae incorporated the ca. 47 kb gene cluster of T3SS, which had been integrated into a site on the chromosome by recombination. Therefore, it is suggested that horizontal gene transfer of T3SS‐related genes occurs among V. cholerae in natural ecosystems.  相似文献   

9.
The type VI secretion system (T6SS) of Gram-negative bacteria has been implicated in microbial competition; however, which components serve purely structural roles, and which serve as toxic effectors remains unresolved. Here, we present evidence that VgrG-3 of the Vibrio cholerae T6SS has both structural and toxin activity. Specifically, we demonstrate that the C-terminal extension of VgrG-3 acts to degrade peptidoglycan and hypothesize that this assists in the delivery of accessory T6SS toxins of V. cholerae. To avoid self-intoxication, V. cholerae expresses an anti-toxin encoded immediately downstream of vgrG-3 that inhibits VgrG-3-mediated lysis through direct interaction.  相似文献   

10.
The Type VI secretion system (T6SS) is a macromolecular complex widespread in Gram-negative bacteria. Although several T6SS are required for virulence towards host models, most are necessary to eliminate competitor bacteria. Other functions, such as resistance to amoeba predation, biofilm formation or adaptation to environmental conditions have also been reported. This multitude of functions is reflected by the large repertoire of regulatory mechanisms shown to control T6SS expression, production or activation. Here, we demonstrate that one T6SS gene cluster encoded within the Yersinia pseudotuberculosis genome, T6SS-4, is regulated by OmpR, the response regulator of the two-component system EnvZ-OmpR. We first identified OmpR in a transposon mutagenesis screen. OmpR does not control the expression of the four other Y. pseudotuberculosis T6SS gene clusters and of an isolated vgrG gene, and responds to osmotic stresses to bind to and activate the T6SS-4 promoter. Finally, we show that T6SS-4 promotes Y. pseudotuberculosis survival in high osmolarity conditions and resistance to deoxycholate.  相似文献   

11.
12.
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.  相似文献   

13.
The type VI secretion system (T6SS) is a spear-like nanomachine found in gram-negative pathogens for delivery of toxic effectors to neighboring bacterial and host cells. Its assembly requires a tip spike complex consisting of a VgrG-trimer, a PAAR protein, and the interacting effectors. However, how the spike controls T6SS assembly remains elusive. Here we investigated the role of three VgrG-effector pairs in Aeromonas dhakensis strain SSU, a clinical isolate with a constitutively active T6SS. By swapping VgrG tail sequences, we demonstrate that the C-terminal ~30 amino-acid tail dictates effector specificity. Double deletion of vgrG1&2 genes (VgrG3+) abolished T6SS secretion, which can be rescued by ectopically expressing chimeric VgrG3 with a VgrG1/2-tail but not the wild type VgrG3. In addition, deletion of effector-specific chaperones also severely impaired T6SS secretion, despite the presence of intact VgrG and effector proteins, in both SSU and Vibrio cholerae V52. We further show that SSU could deliver a V. cholerae effector VasX when expressing a plasmid-borne chimeric VgrG with VasX-specific VgrG tail and chaperone sequences. Pull-down analyses show that two SSU effectors, TseP and TseC, could interact with their cognate VgrGs, the baseplate protein TssK, and the key assembly chaperone TssA. Effectors TseL and VasX could interact with TssF, TssK and TssA in V. cholerae. Collectively, we demonstrate that chimeric VgrG-effector pairs could bypass the requirement of heterologous VgrG complex and propose that effector-stuffing inside the baseplate complex, facilitated by chaperones and the interaction with structural proteins, serves as a crucial structural determinant for T6SS assembly.  相似文献   

14.
The type II secretion system (T2SS) is a large macromolecular complex spanning the inner and outer membranes of many Gram-negative bacteria. The T2SS is responsible for the secretion of virulence factors such as cholera toxin (CT) and heat-labile enterotoxin (LT) from Vibrio cholerae and enterotoxigenic Escherichia coli, respectively. CT and LT are closely related AB5 heterohexamers, composed of one A subunit and a B-pentamer. Both CT and LT are translocated, as folded protein complexes, from the periplasm across the outer membrane through the type II secretion channel, the secretin GspD. We recently published the 19 Å structure of the V. cholerae secretin (VcGspD) in its closed state and showed by SPR measurements that the periplasmic domain of GspD interacts with the B-pentamer complex. Here we extend these studies by characterizing the binding of the cholera toxin B-pentamer to VcGspD using electron microscopy of negatively stained preparations. Our studies indicate that the pentamer is captured within the large periplasmic vestibule of VcGspD. These new results agree well with our previously published studies and are in accord with a piston-driven type II secretion mechanism.Key words: secretin, GspD, electron cryomicroscopy, type II secretion system (T2SS), cholera toxin  相似文献   

15.
The type VI secretion system (T6SS) is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are “orphan” effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.  相似文献   

16.
Two-component signal transduction systems (TCS) are used by bacteria to sense and respond to their environment. TCS are typically composed of a sensor histidine kinase (HK) and a response regulator (RR). The Vibrio cholerae genome encodes 52 RR, but the role of these RRs in V. cholerae pathogenesis is largely unknown. To identify RRs that control V. cholerae colonization, in-frame deletions of each RR were generated and the resulting mutants analyzed using an infant mouse intestine colonization assay. We found that 12 of the 52 RR were involved in intestinal colonization. Mutants lacking one previously uncharacterized RR, VCA0566 (renamed VxrB), displayed a significant colonization defect. Further experiments showed that VxrB phosphorylation state on the predicted conserved aspartate contributes to intestine colonization. The VxrB regulon was determined using whole genome expression analysis. It consists of several genes, including those genes that create the type VI secretion system (T6SS). We determined that VxrB is required for T6SS expression using several in vitro assays and bacterial killing assays, and furthermore that the T6SS is required for intestinal colonization. vxrB is encoded in a four gene operon and the other vxr operon members also modulate intestinal colonization. Lastly, though ΔvxrB exhibited a defect in single-strain intestinal colonization, the ΔvxrB strain did not show any in vitro growth defect. Overall, our work revealed that a small set of RRs is required for intestinal colonization and one of these regulators, VxrB affects colonization at least in part through its regulation of T6SS genes.  相似文献   

17.

Background  

Vibrios, which include more than 100 species, are ubiquitous in marine and estuarine environments, and several of them e.g. Vibrio cholerae, V. parahaemolyticus, V. vulnificus and V. mimicus, are pathogens for humans. Pathogenic V. parahaemolyticus strains possess two sets of genes for type III secretion system (T3SS), T3SS1 and T3SS2. The latter are critical for virulence of the organism and be classified into two distinct phylogroups, T3SS2α and T3SS2β, which are reportedly also found in pathogenic V. cholerae non-O1/non-O139 serogroup strains. However, whether T3SS2-related genes are present in other Vibrio species remains unclear.  相似文献   

18.
19.
The genus Acinetobacter is comprised of a diverse group of species, several of which have raised interest due to potential applications in bioremediation and agricultural purposes. In this work, we show that many species within the genus Acinetobacter possess the genetic requirements to assemble a functional type VI secretion system (T6SS). This secretion system is widespread among Gram negative bacteria, and can be used for toxicity against other bacteria and eukaryotic cells. The most studied species within this genus is A. baumannii, an emerging nosocomial pathogen that has become a significant threat to healthcare systems worldwide. The ability of A. baumannii to develop multidrug resistance has severely reduced treatment options, and strains resistant to most clinically useful antibiotics are frequently being isolated. Despite the widespread dissemination of A. baumannii, little is known about the virulence factors this bacterium utilizes to cause infection. We determined that the T6SS is conserved and syntenic among A. baumannii strains, although expression and secretion of the hallmark protein Hcp varies between strains, and is dependent on TssM, a known structural protein required for T6SS function. Unlike other bacteria, A. baumannii ATCC 17978 does not appear to use its T6SS to kill Escherichia coli or other Acinetobacter species. Deletion of tssM does not affect virulence in several infection models, including mice, and did not alter biofilm formation. These results suggest that the T6SS fulfils an important but as-yet-unidentified role in the various lifestyles of the Acinetobacter spp.  相似文献   

20.
A multitarget molecular beacon-based real-time nucleic acid sequence-based amplification (NASBA) assay for the specific detection of Vibrio cholerae has been developed. The genes encoding the cholera toxin (ctxA), the toxin-coregulated pilus (tcpA; colonization factor), the ctxA toxin regulator (toxR), hemolysin (hlyA), and the 60-kDa chaperonin product (groEL) were selected as target sequences for detection. The beacons for the five different genetic targets were evaluated by serial dilution of RNA from V. cholerae cells. RNase treatment of the nucleic acids eliminated all NASBA, whereas DNase treatment had no effect, showing that RNA and not DNA was amplified. The specificity of the assay was investigated by testing several isolates of V. cholerae, other Vibrio species, and Bacillus cereus, Salmonella enterica, and Escherichia coli strains. The toxR, groEL, and hlyA beacons identified all V. cholerae isolates, whereas the ctxA and tcpA beacons identified the O1 toxigenic clinical isolates. The NASBA assay detected V. cholerae at 50 CFU/ml by using the general marker groEL and tcpA that specifically indicates toxigenic strains. A correlation between cell viability and NASBA was demonstrated for the ctxA, toxR, and hlyA targets. RNA isolated from different environmental water samples spiked with V. cholerae was specifically detected by NASBA. These results indicate that NASBA can be used in the rapid detection of V. cholerae from various environmental water samples. This method has a strong potential for detecting toxigenic strains by using the tcpA and ctxA markers. The entire assay including RNA extraction and NASBA was completed within 3 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号