首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Two-component signal transduction systems (TCS) are used by bacteria to sense and respond to their environment. TCS are typically composed of a sensor histidine kinase (HK) and a response regulator (RR). The Vibrio cholerae genome encodes 52 RR, but the role of these RRs in V. cholerae pathogenesis is largely unknown. To identify RRs that control V. cholerae colonization, in-frame deletions of each RR were generated and the resulting mutants analyzed using an infant mouse intestine colonization assay. We found that 12 of the 52 RR were involved in intestinal colonization. Mutants lacking one previously uncharacterized RR, VCA0566 (renamed VxrB), displayed a significant colonization defect. Further experiments showed that VxrB phosphorylation state on the predicted conserved aspartate contributes to intestine colonization. The VxrB regulon was determined using whole genome expression analysis. It consists of several genes, including those genes that create the type VI secretion system (T6SS). We determined that VxrB is required for T6SS expression using several in vitro assays and bacterial killing assays, and furthermore that the T6SS is required for intestinal colonization. vxrB is encoded in a four gene operon and the other vxr operon members also modulate intestinal colonization. Lastly, though ΔvxrB exhibited a defect in single-strain intestinal colonization, the ΔvxrB strain did not show any in vitro growth defect. Overall, our work revealed that a small set of RRs is required for intestinal colonization and one of these regulators, VxrB affects colonization at least in part through its regulation of T6SS genes.  相似文献   

3.
Vibrio cholerae is the cause of the diarrheal disease cholera. V. cholerae produces RtxA, a large toxin of the MARTX family, which is targeted to the host cell cytosol, where its actin cross-linking domain (ACD) cross-links G-actin, leading to F-actin depolymerization, cytoskeleton rearrangements, and cell rounding. These effects on the cytoskeleton prevent phagocytosis and bacterial engulfment by macrophages, thus preventing V. cholerae clearance from the gut. The V. cholerae Type VI secretion-associated VgrG1 protein also contains a C-terminal ACD, which shares 61% identity with MARTX ACD and has been shown to covalently cross-link G-actin. Here, we purified the VgrG1 C-terminal domain and determined its crystal structure. The VgrG1 ACD exhibits a V-shaped three-dimensional structure, formed of 12 β-strands and nine α-helices. Its active site comprises five residues that are conserved in MARTX ACD toxin, within a conserved area of ∼10 Å radius. We showed that less than 100 ACD molecules are sufficient to depolymerize the actin filaments of a fibroblast cell in vivo. Mutagenesis studies confirmed that Glu-16 is critical for the F-actin depolymerization function. Co-crystals with divalent cations and ATP reveal the molecular mechanism of the MARTX/VgrG toxins and offer perspectives for their possible inhibition.  相似文献   

4.
5.
6.
7.
8.
细菌六型分泌系统的研究进展   总被引:1,自引:0,他引:1  
六型分泌系统(type VI secretion system, T6SS)作为一种广泛存在于革兰氏阴性细菌中的可收缩纳米装置,通过将有毒物质,即效应因子(effector)注射于真核或原核细胞体内,杀死真核捕食者或原核竞争对手.近年来,T6SS基因的多样性、纳米装置的组装和效应因子的致病机制等都获得了广泛关注,取得了重大的突破.本综述基于T6SS的基因组成、组件装配、效应因子种类和调节机制等,分析总结T6SS基因组成的多样性,不同元件组装机制和对应的结构基础,效应因子种类和致病机理,以及T6SS复杂的调控网络等方面的研究进展和未解决的问题,以期为T6SS的研究提供参考.  相似文献   

9.
Gram-negative bacteria have evolved several highly dedicated pathways for extracellular protein secretion, including the type II secretion (T2S) system. Since substrates secreted via the T2S system include both virulence factors and degradative enzymes, this secretion system is considered a major survival mechanism for pathogenic and environmental species. Previous analyses revealed that the T2S system mediates the export of ≥20 proteins in Vibrio cholerae, a human pathogen that is indigenous to the marine environment. Here we demonstrate a new role in biofilm formation for the V. cholerae T2S system, since wild-type V. cholerae was found to secrete the biofilm matrix proteins RbmC, RbmA, and Bap1 into the culture supernatant, while an isogenic T2S mutant could not. In agreement with this finding, the level of biofilm formation in a static microtiter assay was diminished in T2S mutants. Moreover, inactivation of the T2S system in a rugose V. cholerae strain prevented the development of colony corrugation and pellicle formation at the air-liquid interface. In contrast, extracellular secretion of the exopolysaccharide VPS, an essential component of the biofilm matrix, remained unaffected in the T2S mutants. Our results indicate that the T2S system provides a mechanism for the delivery of extracellular matrix proteins known to be important for biofilm formation by V. cholerae. Because the T2S system contributes to the pathogenicity of V. cholerae by secreting proteins such as cholera toxin and biofilm matrix proteins, elucidation of the molecular mechanism of T2S has the potential to lead to the development of novel preventions and therapies.  相似文献   

10.
Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program.  相似文献   

11.
The type VI secretion system (T6SS) of Gram-negative bacteria has been implicated in microbial competition; however, which components serve purely structural roles, and which serve as toxic effectors remains unresolved. Here, we present evidence that VgrG-3 of the Vibrio cholerae T6SS has both structural and toxin activity. Specifically, we demonstrate that the C-terminal extension of VgrG-3 acts to degrade peptidoglycan and hypothesize that this assists in the delivery of accessory T6SS toxins of V. cholerae. To avoid self-intoxication, V. cholerae expresses an anti-toxin encoded immediately downstream of vgrG-3 that inhibits VgrG-3-mediated lysis through direct interaction.  相似文献   

12.
13.
Secretion of cholera toxin and other virulence factors from Vibrio cholerae is mediated by the type II secretion (T2S) apparatus, a multiprotein complex composed of both inner and outer membrane proteins. To better understand the mechanism by which the T2S complex coordinates translocation of its substrates, we are examining the protein-protein interactions of its components, encoded by the extracellular protein secretion (eps) genes. In this study, we took a cell biological approach, observing the dynamics of fluorescently tagged EpsC and EpsM proteins in vivo. We report that the level and context of fluorescent protein fusion expression can have a bold effect on subcellular location and that chromosomal, intraoperon expression conditions are optimal for determining the intracellular locations of fusion proteins. Fluorescently tagged, chromosomally expressed EpsC and EpsM form discrete foci along the lengths of the cells, different from the polar localization for green fluorescent protein (GFP)-EpsM previously described, as the fusions are balanced with all their interacting partner proteins within the T2S complex. Additionally, we observed that fluorescent foci in both chromosomal GFP-EpsC- and GFP-EpsM-expressing strains disperse upon deletion of epsD, suggesting that EpsD is critical to the localization of EpsC and EpsM and perhaps their assembly into the T2S complex.The type II secretion (T2S) pathway is widely used by pathogenic gram-negative bacteria for delivery of virulence factors into the extracellular milieu (11, 17, 46). Proteins destined for release through this pathway are first translocated across the cytoplasmic membrane via the Sec (24, 42) or Tat (59) machinery. Following folding and assembly in the periplasm, the proteins are transported across the outer membrane via the T2S machinery, a complex composed of 12 to 16 different gene products, depending on the species. In Vibrio cholerae, the elements of the T2S apparatus are encoded by the extracellular protein secretion (eps) genes, epsC through epsN and pilD (vcpD) (18, 31, 39, 49, 50). Together these proteins coordinate the outer membrane translocation of the major virulence factor, cholera toxin, as well as chitinase, lipase, hemagglutinin/protease, and other proteases (12, 27, 49). Our studies are focused on better understanding how the T2S complex assembles in the cell envelope of V. cholerae to begin to elucidate the mechanism by which extracellular secretion is accomplished.The T2S apparatus is modeled as an envelope-spanning complex with subcomplexes in the inner and outer membranes (see Fig. S1 in the supplemental material). The precise stoichiometry and juxtaposition of the Eps proteins are not known, but accumulating biochemical, genetic, and molecular studies continue to refine our understanding of complex assembly and function (for a review, see reference 25). A trimolecular complex consisting of cytoplasmic protein EpsE and inner membrane proteins EpsL and EpsM has been identified. EpsL and EpsM have been shown to coimmunoprecipitate and participate in mutual stabilization interactions in vivo by protecting each other from proteolysis (34, 41, 43, 48). Homologs of inner membrane protein EpsC have been implicated in interactions with the aforementioned inner membrane subcomplex (20, 29, 57), as well as homologs of outer membrane protein EpsD, which form oligomeric rings through which the secreted substrates, it is hypothesized, exit the cell (1, 10, 36, 38). More specifically, EpsC homologs in Pseudomonas aeruginosa and Klebsiella oxytoca are sensitive to proteolysis or unable to oligomerize in the absence of EpsD homologs (2, 40); however, direct interactions between these two proteins in their full-length forms have not been shown by coimmunoprecipitation or copurification. Although yeast two-hybrid analysis of the periplasmic domains of the Erwinia chrysanthemi EpsC and EpsD homologs also did not reveal interaction (15), recently it was shown that periplasmic subdomains of EpsC and EpsD homologs of Vibrio vulnificus copurified (28). It seems likely that EpsC, having interactions with both inner and outer membrane subcomplexes, plays a crucial role in complex function by connecting the inner membrane components to the outer membrane EpsD pore. Furthermore, it has been speculated that EpsC homologs impart specificity to the various T2S systems by directly interacting with proteins to be secreted (3).We have taken a cell biology approach to characterizing Eps protein interactions, observing the dynamics of green fluorescent protein (GFP)-tagged components of the Eps complex in live cells by fluorescence microscopy. This method permits study of Eps protein assembly in the context of the complete apparatus, situated in both membranes, without the disruptive procedures required for many in vitro molecular and biochemical analyses of protein-protein interactions. Here we present data illustrating the importance of expressing GFP fusions for localization studies with all other interacting components, preserving wild-type stoichiometry and expression levels. In particular, we note that GFP-EpsM does not appear to be focused at the polar membrane as previously described (53), when expressed in balance with its interacting proteins. Chromosomal replacement of epsM and epsC with gfp-tagged versions instead reveals a more distributed pattern, with punctate fluorescent foci along the full length of the cell. We have exploited these chromosomal gfp-eps strains to further dissect the interactions and requirements for localization of EpsC and EpsM by systematically deleting other eps genes in the operon.  相似文献   

14.
The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen’s arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.  相似文献   

15.
16.
17.
The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS.  相似文献   

18.
19.
The type VI secretion system (T6SS) is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are “orphan” effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.  相似文献   

20.
Several species of the genus Vibrio, including Vibrio cholerae, are bioluminescent or contain bioluminescent strains. Previous studies have reported that only 10% of V. cholerae strains are luminescent. Analysis of 224 isolates of non-O1/non-O139 V. cholerae collected from Chesapeake Bay, MD, revealed that 52% (116/224) were luminescent when an improved assay method was employed and 58% (130/224) of isolates harbored the luxA gene. In contrast, 334 non-O1/non-O139 V. cholerae strains isolated from two rural provinces in Bangladesh yielded only 21 (6.3%) luminescent and 35 (10.5%) luxA+ isolates. An additional 270 clinical and environmental isolates of V. cholerae serogroups O1 and O139 were tested, and none were luminescent or harbored luxA. These results indicate that bioluminescence may be a trait specific for non-O1/non-O139 V. cholerae strains that frequently occur in certain environments. Luminescence expression patterns of V. cholerae were also investigated, and isolates could be grouped based on expression level. Several strains with defective expression of the lux operon, including natural K variants, were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号