首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cross-linked enzyme aggregates (CLEAs) have emerged as an interesting biocatalyst design for immobilization. Using this approach, a 1,3 regiospecific, alkaline and thermostable lipase from Thermomyces lanuginosa was immobilized. Efficient cross-linking was observed when ammonium sulphate was used as precipitant along with a two fold increase in activity in presence of SDS. The TEM and SEM microphotographs of the CLEAs formed reveal that the enzyme aggregates are larger in size as compared to the free lipase due to the cross-linking of enzyme aggregates with glutaraldehyde. The stability and reusability of the CLEA with respect to olive oil hydrolysis was evaluated. The CLEA showed more than 90% residual activity even after 10 cycles of repeated use.  相似文献   

2.
Cross-linked tyrosinase aggregates were prepared by precipitating the enzyme with ammonium sulfate and subsequent cross-linking with glutaraldehyde. Both activity and stability of these cross-linked enzyme aggregates (CLEAs) in aqueous solution, organic solvents, and ionic liquids have been investigated. Immobilization effectively improved the stability of the enzyme in aqueous solution against various deactivating conditions such as pH, temperature, denaturants, inhibitors, and organic solvents. The stability of the CLEAs in various organic solvents such as tert-butanol (t(1/2)=326.7h at 40°C) was significantly enhanced relative to that in aqueous solution (t(1/2)=5.5h). The effect of thermodynamic water activity (a(w)) on the CLEA activity in organic media was examined, demonstrating that the enzyme incorporated into CLEAs required an extensive hydration (with an a(w) approaching 1.0) for optimizing its activity. The impact of ionic liquids on the CLEA activity in aqueous solution was also assessed.  相似文献   

3.
We employed a cross-linked enzyme aggregate (CLEA) method to immobilize formate dehydrogenase (FDH) from Candida boidinii. The optimal conditions for the preparation of CLEAs were determined by examining effects of various parameters: the nature and amount of cross-linking reagent, additive concentration, cross-linking time, and pH during CLEA preparation. The recovered activities of CLEAs were significantly dependent on the concentration of glutaraldehyde; however, the recovered activity was not severely influenced by the content of dextran polyaldehyde as a mild cross-linker. Bovine serum albumin (BSA) was also used as a proteic feeder and enhanced the activity recovery by 130%. The highest recovered activity of CLEA was 18% for formate oxidation reaction and 25% for CO2 reduction reaction. The residual activity of CLEA prepared with dextran polyaldehyde (Dex-CLEA) was over 95% after 10 cycles of reuse. The thermal stability of Dex-CLEA was increased by a factor of 3.6 more than that of the free enzyme. CLEAs of FDH could be utilized efficiently for both NADH regeneration and CO2 reduction.  相似文献   

4.
Lipase from Rhizopus oryzae (ROL) was immobilized as crosslinked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and simultaneous crosslinking with glutaraldehyde. The optimum conditions of the immobilization process were determined. Lipase CLEAs showed a twofold increase in activity when Tween 80‐pretreated lipase was used for CLEA preparation. CLEAs were shown to have several advantages compared to free lipase. CLEAs were more stable at 50°C and 60°C as well as for a wide range of pH. After incubation at 50°C, CLEA showed 74% of initial activity whereas free enzyme was totally inactivated. Reduction of Schiff bases has been performed for the first time in the CLEA preparation process significantly improving the chemically modified CLEAs' reusability, thus providing an enzyme with high potential for recycling even under aqueous reaction conditions where enzyme leakage is, in general, one of the major problems. The CLEA retained 91% activity after 10 cycles in aqueous medium. The immobilized enzyme was used for kinetic resolution reactions. Results showed that immobilization had an enhancing effect on the conversion (c) as well as on the enantiomeric ratio (E). ROL CLEA displayed five times higher enantioselectivity for the hydrolysis of (R,S)‐1‐phenylethyl acetate and likewise 1.5 times higher enantioselectivity for the transesterification of racemic (RS)‐1‐phenylethanol with vinylacetate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 937–945, 2012 This article was published online on June 26, 2012. An edit was subsequently requested. This notice is included in the online and print versions to indicate that both have been corrected [27 June 2012].  相似文献   

5.
Abstract

The present study focusses on the enhancement of the catalytic activity and stability of an acetylesterase enzyme isolated from Staphylococcus spp. as Cross-Linked Enzyme Aggregates (CLEAs). The various parameters governing the activity of CLEAs were optimized. The magnetite and graphene oxide nanoparticles were successfully prepared via the chemical co-precipitation and Hummer's method, respectively. These nanoparticles supported the preparation as magnetite nanoparticle-supported cross-Linked Enzyme Aggregates (MGNP-CLEAs) and graphene oxide-supported Cross-Linked Enzyme Aggregates (GO-CLEAs). The activity and stability of these immobilized CLEAs were compared with the free enzyme at various temperature, pH, and organic solvents along with its storage stability and reusability. The immobilized preparations were analyzed by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FT-IR) techniques. Acetylesterase precipitated with 60% saturated ammonium sulfate salt (SAS) solution and cross-linked with 100?mM glutaraldehyde for 4?h at 30?°C was found to be optimal to produce CLEAs with highest activity recovery of 99.8%. The optimal pH at 8.0 and temperature at 30?°C remained the same for both the free and immobilized enzyme, respectively. Storage stability significantly improved for the immobilized enzyme as compared to free enzyme. SEM showed type-I aggregate and FT-IR revealed the successful immobilization of the enzyme. MGNP-CLEAs were found to have better activity and stability in comparison to other immobilized preparations.  相似文献   

6.
Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. The ionic cross-linking agent-sodium tripolyphosphate (TPP) was first used in preparing CLEAs. Aspergillus niger lipase was precipitated with ammonium sulfate and further cross-linked by TPP. The factors including enzyme concentration, pH of cross-linking medium, TPP dosage and cross-linking time were optimized. Maximum recovery activity (99.5 ± 0.634 %) and cross-linking yield (88.4 ± 0.46 %) can be obtained under the optimal process conditions, which can illustrate TPP had little effect on enzyme activity. CLEAs showed improved activity over broad pH and temperature range compared to the free enzyme. The thermal stability was obviously improved compared to free enzyme under the optimal temperature (40℃) and the half-life was 7.5-fold higher than that of free enzyme. Moreover, scanning electron microscopy (SEM) revealed that CLEAs had a cavity with porous structure and the particle size was 249 ± 3.98 nm. X-ray diffraction (XRD) showed the crystallinity of the CLEAs decreased. The changes in secondary structures of CLEAs revealed the increment in conformational rigidity. Such results suggested that the CLEAs has ideal application prospects.  相似文献   

7.
Cross-linked enzyme aggregates (CLEA®) were prepared from laccases from three different sources: Trametes versicolor, Trametes villosa and Agaricus bisporus. The effect of the various parameters – nature of the precipitant, pH, temperature, glutaraldehyde concentration and cross-linking time – on the activity recovery and storage and operational stability of the resulting CLEAs was different. The laccase CLEAs exhibited the expected increased stability compared to the free enzyme but there was no direct correlation with the number of surface lysine residues in the latter. It is clearly not the only parameter influencing the properties of the CLEA. Co-aggregation with albumin did not improve the stability. The laccase CLEAs, in combination with the stable N-oxy radical, TEMPO, were shown to be active and stable catalysts for the aerobic oxidation of linear C5–C10 aliphatic alcohols, to the corresponding aldehydes, in aqueous buffer (pH 4). Rates were an order of magnitude higher than those observed with the corresponding free enzyme and the CLEAs could be recycled several times without appreciable loss of activity. The addition of water immiscible or water miscible solvents showed no further improvement in rate compared with reactions in aqueous buffer alone.  相似文献   

8.
Large mesoporous cellular foam (LMCF) materials were synthesized using the microemulsion templating route. For the enzyme stabilization, β-glucosidase was immobilized onto mesocellular silica foams (MCFs) in a simple and effective way, a process achieved using enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of crosslinked enzyme aggregates (CLEAs) of nanometer scale. The structural and chemical properties of these prepared materials were characterized by TG, CPMAS NMR and nitrogen adsorption measurements. The crosslinked immobilizates retained activity over wider ranges of temperature and pH than those of the free enzyme. Kinetic parameter (Km) of the immobilized β-glucosidase is lower than that of its free counterpart. The resulting CLEA was proved to be active and recyclable up to 10 cycles without much loss in activity. This demonstrates its prospects for commercial applications. The immobilizate exhibited enhanced storage stability characteristics than the native enzyme. In contrast to adsorbed GL and covalently bound glucosidase, the resulting crosslinked enzyme aggregates (CLEAs) showed an impressive stability with high enzyme loadings.  相似文献   

9.
Cross-linked enzyme aggregates (CLEAs) are novel type biocatalysts well suited to catalyze reactions of organic synthesis. Penicillin acylase is a versatile enzyme that can both hydrolyze and synthesize β-lactam antibiotics. CLEAs and CLEAs covered with polyionic polymers (polyethyleneimine and dextran sulfate at two different enzyme to polymer ratios) were prepared at varying cross-linking agent to enzyme ratio: 0.15 and 0.25. Results are presented on the effect of such variables on immobilization yield, specific activity, stability and performance of penicillin acylase CLEAs in the kinetically controlled synthesis of cephalexin. The cross-linking agent to enzyme ratio had no significant effect on the specific activity of the CLEAs, but affected immobilization yield, stability in ethylene glycol medium and conversion yield and productivity in the synthesis of cephalexin, being always higher at the lower cross-linking agent to enzyme ratio. Best results were obtained with CLEAs at 0.15 glutaraldehyde to enzyme protein ratio: specific activity of hydrolysis and synthesis was 708 and 325 UI/gCLEA respectively, conversion yield was 87%, specific productivity was 5.4 mmol cephalexin/(gCLEA·h) and 90% of the enzyme remained active after 170 h at operating conditions.  相似文献   

10.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg-1 h-1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

11.
《Process Biochemistry》2014,49(8):1332-1336
Keratinase from Purpureocillium lilacinum LPSC # 876 was immobilized on chitosan beads using two different cross-linking agents: glutaraldehyde and genipin. For its immobilization certain parameters were optimized such as cross-linker concentration, activation time and activation temperature. Under optimum conditions, enzyme immobilization resulted to be 96 and 92.8% for glutaraldehyde and genipin, respectively, with an activity recovery reaching up to 81% when genipin was used. The immobilized keratinase showed better thermal and pH stabilities compared to the soluble form, retaining more than 85% of its activity at pH 11 and 74% at 50 °C after 1 h of incubation. The residual activity of immobilized keratinase remained more than 60% of its initial value after five hydrolytic cycles. The results in this study support that glutaraldehyde could be replaced by genipin as an alternative cross-linking eco-friendly agent for enzyme immobilization.  相似文献   

12.
《Process Biochemistry》2010,45(2):259-263
The para-nitrobenzyl esterase (PNBE), which was encoded by pnbA gene from Bacillus subtilis, was immobilized on amino-functionalized magnetic supports as cross-linked enzyme aggregates (CLEA). The maximum amount of PNBE-CLEA immobilized on the magnetic beads using glutaraldehyde as a coupling agent was 31.4 mg/g of beads with a 78% activity recovery after the immobilization. The performance of immobilized PNBE-CLEA was evaluated under various conditions. As compared to its free form, the optimal pH and temperature of PNBE-CLEA were 1 unit (pH 8.0) and 5 °C higher (45 °C), respectively. Under different temperature settings, the residual enzyme activity was highest for the PNBE-CLEA, followed by covalently fixed PNBE without further cross-linking and the free PNBE. During 40 days of storage pried, the PNBE-CLEA maintained more than 90% of its initial activity while the free PNBE maintained about 60% under the same condition. PNBE-CLEA also retained more than 80% activity after 30 reuses with 30 min of each reaction time, indicating stable reusability under aqueous medium.  相似文献   

13.
The main objective of the present work is to study the immobilization process of Aspergillus oryzae β-galactosidase using the ionic exchange resin Duolite A568 as carrier. Initially, the immobilization process by ionic binding was studied through a central composite design (CCD), by analyzing the simultaneous influences of the enzyme concentration and pH on the immobilization medium. The results indicate that the retention of enzymatic activity during the immobilization process was strongly dependant of those variables, being maximized at pH 4.5 and enzyme concentration of 16 g/L. The immobilized enzyme obtained under the previous conditions was subjected to a cross-linking process with glutaraldehyde and the conditions that maximized the activity were a glutaraldehyde concentration of 3.83 g/L and cross-linking time of 1.87 h. The residual activity of the immobilized enzyme without glutaraldehyde cross-linking was 51% of the initial activity after 30 uses, while the enzyme with cross-linking immobilization was retained 90% of its initial activity. The simultaneous influence of pH and temperature on the immobilized β-galactosidase activity was also studied through a central composite design (CCD). The results indicate a greater stability on pH variations when using the cross-linking process.  相似文献   

14.
Laccase from the white rot fungus Coriolopsis polyzona was immobilized for the first time through the formation of cross-linked enzyme aggregates (CLEAs). Laccase CLEAs were produced by using 1000g of polyethylene glycol per liter of enzyme solution as precipitant and 200muM of glutaraldehyde as a cross-linking agent. These CLEAs had a laccase activity of 148Ug(-1) and an activity recovery of 60.2% when using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as substrate. CLEAs formed by co-aggregation with bovine serum albumin (BSA) as a stabilizer showed lower laccase activity and affinity for ABTS than those without BSA. The CLEAs co-aggregated with BSA showed higher residual activity against a protease, NaN(3), EDTA, methanol and acetone. The thermoresistance was higher for CLEAs than for free laccase and also higher for CLEAs co-aggregated with BSA than for simple CLEAs when tested at a pH of 3 and a temperature of 40 degrees C. Finally, laccase CLEAs were tested for their capacity to eliminate the known or suspected endocrine disrupting chemicals (EDCs) nonylphenol, bisphenol A and triclosan in a fluidized bed reactor. A 100-ml reactor with 0.5mg of laccase CLEAs operated continuously at a hydraulic retention time of 150min at room temperature and pH 5 could remove all three EDCs from a 5mgl(-1) solution.  相似文献   

15.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg?1 h?1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

16.
Addition of bovine serum albumin (BSA) as a proteic feeder facilitates obtaining cross-linked enzyme aggregates (CLEAs) in cases where the protein concentration in the enzyme preparation is low and/or the enzyme activity is vulnerable to the high concentration of glutaraldehyde required to obtain aggregates. CLEAs of Pseudomonas cepacia lipase and penicillin acylase were prepared. CLEA of lipase prepared in the presence of BSA retained 100% activity whereas CLEA prepared without BSA retained only 0.4% activity of the starting enzyme preparation. Lipase CLEA showed 12-fold increase in activity over free enzyme powder when the CLEA was used in transesterification of tributyrin. For the transesterification of Jatropha oil, while free enzyme powder required 8 h and 50 mg lipase to obtain 77% conversion, CLEA required only 6 h and 6.25 mg lipase to obtain 90% conversion. In the case of penicillin acylase, 86% activity could be retained in CLEA prepared with BSA whereas CLEA made without BSA retained only 50% activity. CLEA prepared without BSA lost 20% activity after 8 h at 45 degrees C whereas CLEA with BSA retained full activity. CLEA prepared with BSA showed Vmax/Km of 36.3 min-1 whereas CLEA prepared without BSA had Vmax/Km of 17.4 min-1 only. Scanning electron microscopy analysis showed that CLEAs prepared in the presence of BSA were less amorphous and closer in morphology to CLEAs of other enzymes described in the literature.  相似文献   

17.
Enzyme stabilization is one of the major challenges in the biocatalytic process optimization. Subtilisin was aggregated using ammonium sulphate and polyethylene glycol with surfactants like triton X-100 and tween 20. The resultant aggregates on cross-linking with glutaraldehyde produced insoluble and catalytically active enzyme. The effect of pH, temperature, kinetic parameter, thermal stability and stability in organic solvents were studied. The cross-linked enzyme aggregates (CLEA) exhibited broad pH optima of 9.0 and higher temperature optima of 70 degrees C. Reusability and surface morphology of the CLEA were also studied. CLEA of subtilisin has good stability in nonpolar organic solvents, such as hexane, and cyclohexane and it has high thermal stability up to 60 degrees C and therefore can be used as a catalyst for the biotransformation of compounds which are not soluble in aqueous medium. The CLEAs were entrapped in the hydrogel composite beads of alginate:guar gum (3:1) which were resistant to low pH conditions in the stomach and thus was found to be useful for the oral drug delivery. This process can be used to deliver the protein and peptide drugs which involve high concentrations at the delivery stage, and which usually degrades in the stomach before reaching the jejunum. Application of these pH-sensitive beads for the controlled release of subtilisin in vitro was studied and found to be a feasible strategy.  相似文献   

18.
Cross‐linked enzyme aggregates (CLEAs) were prepared from several precipitant agents using glutaraldehyde as a cross‐linking agent with and without BSA, finally choosing a 40% saturation of ammonium sulfate and 25 mM of glutaraldehyde. The CLEAs obtained under optimum conditions were biochemically characterized. The immobilized enzyme showed higher thermal activity and a broader range of pH and organic solvent tolerance than the free enzyme. Arylesterase from Gluconobacter oxydans showed activity toward cephalosporin C and 7‐aminocephalosporanic acid. The CLEAs had a Kcat/KM of 0.9 M?1/S?1 for 7‐ACA (7‐aminocephalosporanic acid) and 0.1 M?1/S?1 for CPC (cephalosporin c), whereas free enzyme did not show a typical Michaelis–Menten kinetics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:36–42, 2016  相似文献   

19.
Abstract

Present study was undertaken to develop cross-linked enzyme aggregate (CLEA)of alkaline serine proteases (sp) from Pythium myriotylum (Pm), a necrotrophic oomycete reported to considerably secrete serine proteases. Among various precipitants screened for spPm1-CLEA preparation, ammonium sulfate at 80% saturation (w/v) yielded 100% activity recovery and retention of spherical morphology as observed by SEM analysis. Addition of glutaraldehyde as cross-linker at 1% (v/v) concentration with optimized ammonium sulfate concentration for 1?hour at 100?rpm yielded 100% activity recovery of spPm1-CLEA from 8-day old P. myriotylum culture filtrate. Addition of BSA (10?mg/ml) to CLEA cross-linking reaction mix reduced CLEA size from the range of 1.82–1.19?µm to 394–647?nm. spPm1-CLEA preparations retained 100% activity at temperature of 80?°C and pH 12.0 signifying their potential commercial applications. In terms of kinetic parameters, present process enhanced kinetic parameters as revealed by 1.67?U.mg?1 specific activity, Km of 0.062?mM and Vmax of 0.145?µmol.min?1.mg?1 for the spPm1-CLEA compared to 0.288?U.mg?1 specific activity, Km of 0.060?mM and Vmax of 0.20?µmol.min?1.mg?1 determined for the free spPm1 enzyme. Study has successfully demonstrated the concept of CLEA in enhancing spPm1 stability and the results so generated can be translated in future towards development of robust biocatalysts.  相似文献   

20.
Hydroxynitrile lyases are powerful catalysts in the synthesis of enantiopure cyanohydrins which are key synthons in the preparations of a variety of important chemicals. The response surface methodology including three‐factor and three‐level Box–Behnken design was applied to optimize immobilization of hydroxynitrile lyase purified partially from Prunus dulcis seeds as crosslinked enzyme aggregates (PdHNL‐CLEAs). The quadratic model was developed for predicting the response and its adequacy was validated with the analysis of variance test. The optimized immobilization parameters were initial glutaraldehyde concentration, ammonium sulfate saturation concentration, and crosslinking time, and the response was relative activity of PdHNL‐CLEA. The optimal conditions were determined as initial glutaraldehyde concentration of 25% w/v, ammonium sulfate saturation concentration of 43% w/v, and crosslinking time of 18 h. The preparations of PdHNL‐CLEA were examined for the synthesis of (R)‐mandelonitrile, (R)‐2‐chloromandelonitrile, (R)‐3,4‐dihydroxymandelonitrile, (R)‐2‐hydroxy‐4‐phenyl butyronitrile, (R)‐4‐bromomandelonitrile, (R)‐4‐fluoromandelonitrile, and (R)‐4‐nitromandelonitrile from their corresponding aldehydes and hydrocyanic acid. After 96‐h reaction time, the yield–enantiomeric excess values (%) were 100?99, 100?21, 100?99, 83?91, 100?99, 100?72, and 100?14%, respectively, for (R)‐mandelonitrile, (R)‐2‐chloromandelonitrile, (R)‐3,4‐dihydroxymandelonitrile, (R)‐2‐hydroxy‐4‐phenyl butyronitrile, (R)‐4‐bromomandelonitrile, (R)‐4‐fluoromandelonitrile, and (R)‐4‐nitromandelonitrile. The results show that PdHNL‐CLEA offers a promising potential for the preparation of enantiopure (R)‐mandelonitrile, (R)‐3,4‐dihydroxymandelonitrile, (R)‐2‐hydroxy‐4‐phenyl butyronitrile, and (R)‐4‐bromomandelonitrile with a high yield and enantiopurity. © 2014 American Institute of Chemical Engineers Biotechnol. Prog, 30:818–827, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号