首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
随着现代社会工业的发展,空气污染日益严重,空气污染对人体的损害也越来越大。空气污染中的有害物质,能通过各种途径引起各系统的疾病,甚至会影响儿童的身体和智力发育。研究发现,长期暴露或急性暴露在某些空气污染物中可以直接损伤中枢神经系统,或污染物引起呼吸系统和免疫系统等产生有害因子,通过外周循环到达大脑,导致大脑的神经炎症、神经毒性、氧化应激等反应,最终产生神经退行性病变,如阿尔茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)等。  相似文献   

2.
Literature data on the role of oxidative stress in aging have been summarized. There are certain links between parameters of free radical processes (intensity of generation of reactive oxygen species in mitochondria, oxidative modification of mitochondrial DNA, activity of desaturases, involved into biosynthesis of polyunsaturated C20 and C22 fatty acids) with life span. The review highlights the role of oxidative stress as on of pathogenic factors of numerous diseases including various neurodegenerative disorders. Special attention is paid to oxidative modification of proteins as one of early and reliable markers of tissue injury in free radical pathology. Oxidative destruction of proteins plays a major role in etiology of such neurodegenerative diseases as Alzheimer’s and Parkinson’s diseases. Oxidative stress and the stress related protein aggregation are considered as the pathogenic link in the development of familiar amyotrophic lateral sclerosis. Oxidative modification of proteins is associated with the development of cataract. The age-and pathology-related increases in the content of oxidized proteins in tissues is assessed as an early and specific parameter of oxidative stress.  相似文献   

3.
神经退行性疾病(Neurodegenerative disease)是一类以神经元退行性病变为基础的慢性、进行性、不可逆的神经系统疾病的总称,主要包括阿尔茨海默病(Alzheimer's disease,AD)、帕金森病(Parkinson's disease,PD)、亨廷顿舞蹈病(Huntington disease,HD)、肌萎缩侧索硬化症(amyotrophic lateral sclerosis,ALS)、脊髓肌萎缩症(spinal muscular atrophy,SMA)、不同类型脊髓小脑共济失调(spinal cerebella ataxias,SCA)等。其病因和发病机制十分复杂,其中,氧化应激学说近年来受到了人们的广泛关注和普遍认可。而研究表明,Nrf2-ARE信号通路是体内抗氧化应答机制中最重要的通路之一,其能对氧化应激导致的神经细胞损伤产生保护作用,即阻止神经细胞的病变和凋亡,进而延缓神经退行性疾病的发生发展,因而有望成为神经退行性疾病的有效治疗靶标。本文就Nrf2-ARE信号通路结构特点及Nrf2-ARE信号通路在神经退行性疾病中的作用研究进展作一综述。  相似文献   

4.
Cataract is a visible opacity in the lens substance, which, when located on the visual axis, leads to visual loss. Age-related cataract is a cause of blindness on a global scale involving genetic and environmental influences. With ageing, lens proteins undergo non-enzymatic, post-translational modification and the accumulation of fluorescent chromophores, increasing susceptibility to oxidation and cross-linking and increased light-scatter. Because the human lens grows throughout life, the lens core is exposed for a longer period to such influences and the risk of oxidative damage increases in the fourth decade when a barrier to the transport of glutathione forms around the lens nucleus. Consequently, as the lens ages, its transparency falls and the nucleus becomes more rigid, resisting the change in shape necessary for accommodation. This is the basis of presbyopia. In some individuals, the steady accumulation of chromophores and complex, insoluble crystallin aggregates in the lens nucleus leads to the formation of a brown nuclear cataract. The process is homogeneous and the affected lens fibres retain their gross morphology. Cortical opacities are due to changes in membrane permeability and enzyme function and shear-stress damage to lens fibres with continued accommodative effort. Unlike nuclear cataract, progression is intermittent, stepwise and non-uniform.  相似文献   

5.
Cytoglobin (Cygb) is a novel tissue hemoprotein relatively similar to myoglobin (Mb). Because Cygb shares several structural features with Mb, we hypothesized that Cygb functions in the modulation of oxygen and nitric oxide metabolism or in scavenging free radicals within a cell. In the present study we examined the spatial and temporal expression pattern of Cygb during murine embryogenesis. Using in situ hybridization, RT-PCR, and Northern blot analyses, limited Cygb expression was observed during embryogenesis compared with Mb expression. Cygb expression was primarily restricted to the central nervous system and neural crest derivatives during the latter stages of development. In the adult mouse, Cygb is expressed in distinct regions of the brain as compared with neuroglobin (Ngb), another globin protein, and these regions are responsive to oxidative stress (i.e., hippocampus, thalamus, and hypothalamus). In contrast to Ngb, Cygb expression in the brain is induced in response to chronic hypoxia (10% oxygen). These results support the hypothesis that Cygb is an oxygen-responsive tissue hemoglobin expressed in distinct regions of thenormoxic and hypoxic brain and may play a key role in the response of the brain to ahypoxic insult.  相似文献   

6.
In recent years we have witnessed a major interest in the study of the role of mitochondria, not only as ATP producers through oxidative phosphorylation but also as regulators of intracellular Ca2+ homeostasis and endogenous producers of reactive oxygen species (ROS). Interestingly, the mitochondria have been also implicated as central executioners of cell death. Increased mitochondrial Ca2+ overload as a result of excitotoxicity has been associated with the generation of superoxide and may induce the release of proapoptotic mitochondrial proteins, proceeding through DNA fragmentation/condensation and culminating in cell demise by apoptosis and/or necrosis. In addition, these processes have been implicated in the pathogenesis of many neurodegenerative diseases, which share several features of cell death: selective brain areas undergo neurodegeneration, involving mitochondrial dysfunction (mitochondrial complexes are affected), loss of intracellular Ca2+ homeostasis, excitotoxicity, and the extracellular or intracellular accumulation of insoluble protein aggregates in the brain.  相似文献   

7.
Nitric oxide is a versatile mediator formed by enzymes called nitric oxide synthases. It has numerous homeostatic functions and important roles in inflammation. Within the inflamed brain, microglia and astrocytes produce large amounts of nitric oxide during inflammation. Excessive nitric oxide causes neuronal toxicity and death and mesenchymal stem cells can be used as an approach to limit the neuronal damage caused by neuroinflammation. Mesenchymal stem cell therapy ameliorates inflammation and neuronal damage in disease models of Alzheimer’s disease, Parkinson’s disease, and other neuroinflammatory disorders. Interestingly, we have reported that in vitro, mesenchymal stem cells themselves contribute to a rise in nitric oxide levels through microglial cues. This may be an undesirable effect and highlights a possible need to explore acellular approaches for mesenchymal stem cell therapy in the central nervous system.  相似文献   

8.
Human activity is changing climatic conditions at an unprecedented rate. The impact of these changes may be especially acute on ectotherms since they have limited capacities to use metabolic heat to maintain their body temperature. An increase in temperature is likely to increase the growth rate of ectothermic animals, and may also induce thermal stress via increased exposure to heat waves. Fast growth and thermal stress are metabolically demanding, and both factors can increase oxidative damage to essential biomolecules, accelerating the rate of ageing. Here, we explore the potential impact of global warming on ectotherm ageing through its effects on reactive oxygen species production, oxidative damage, and telomere shortening, at the individual and intergenerational levels. Most evidence derives primarily from vertebrates, although the concepts are broadly applicable to invertebrates. We also discuss candidate mechanisms that could buffer ectotherms from the potentially negative consequences of climate change on ageing. Finally, we suggest some potential applications of the study of ageing mechanisms for the implementation of conservation actions. We find a clear need for more ecological, biogeographical, and evolutionary studies on the impact of global climate change on patterns of ageing rates in wild populations of ectotherms facing warming conditions. Understanding the impact of warming on animal life histories, and on ageing in particular, needs to be incorporated into the design of measures to preserve biodiversity to improve their effectiveness.  相似文献   

9.
Stem cells of different origin are under careful scrutiny as potential new tools for the treatment of several neurological diseases. The major focus of these reaserches have been neurodegenerative disorders, such as Huntington Chorea or Parkinson Disease (Shihabuddin et al., 1999). More recently attention has been devoted to their use for brain repair after stroke (Savitz et al., 2002). In this review we will focus on the potential of stem cell treatments for glioblastoma multiforme (Holland, 2000), the most aggressive primary brain tumor, and globoid cell leukodystrophy (Krabbe disease), a metabolic disorder of the white matter (Berger et al., 2001). These two diseases may offer a paradigm of what the stem cell approach may offer in term of treatment, alone or in combination with other therapeutic approaches. Two kinds of stem cells will be consideredhere: neural stem cells and hematopoietic stem cells, both obtained after birth. The review will focus on experimental models, with an eye on clinical perspectives. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A common feature in the early stages of many neurodegenerative diseases lies in mitochondrial dysfunction, oxidative stress, and reduced levels of synaptic transmission. Many genes associated with neurodegenerative diseases are now known to regulate either mitochondrial function, redox state, or the exocytosis of neurotransmitters. Mitochondria are the primary source of reactive oxygen species and ATP and control apoptosis. Mitochondria are concentrated in synapses and significant alterations to synaptic mitochondrial localization, number, morphology, or function can be detrimental to synaptic transmission. Mitochondrial by-products are capable of regulating various steps of neurotransmission and mitochondrial dysfunction and oxidative stress occur in the early stages of many neurodegenerative diseases. This mini-review will highlight the prospect that mitochondria regulates synaptic exocytosis by controlling synaptic ATP and reactive oxygen species levels and that dysfunctional exocytosis caused by mitochondrial abnormalities may be a common underlying phenomenon in the initial stages of some human neurodegenerative diseases.  相似文献   

11.
Dutheil F  Beaune P  Loriot MA 《Biochimie》2008,90(3):426-436
The metabolism of xenobiotics in human brain constitutes a field of recent intensive research in relation to the potential implications in the pharmacological effect of drugs acting on the central nervous system. Cytochrome P450 enzymes (CYPs) play a crucial role in these metabolic pathways and the existence of functional CYP monooxygenases in brain is now well established. These enzymes are preferentially localized in the neuronal cells within the microsomal fraction and the inner membrane of mitochondria. Although low, the metabolism in situ could influence individual response to xenobiotics or produce reactive, toxic metabolites causing irreversible damage in the neuronal cells. The abundant presence of CYPs in selective cell populations within different regions of the brain has also suggested a role for these enzymes in brain physiology thus not restricted to xenobiotic-induced neurotoxicity. For instance, CYPs participate in the regulation of neurotransmitters and steroids and brain maintenance of cholesterol homeostasis. Recent advances support an additional role for these enzymes in the pathogenesis of psychiatric and neurodegenerative disorders such as depression, schizophrenia, and Alzheimer's and Parkinson's diseases. The characterization of brain CYP isoforms and their localization, the identification of their substrates and metabolic end-products will allow better understanding of the role of these enzymes in brain physiology, development and diseases.  相似文献   

12.
Curcumin, a dietary polyphenol and major constituent of Curcuma longa (Zingiberaceae), is extensively used as a spice in Asian countries. For ages, turmeric has been used in traditional medicine systems to treat various diseases, which was possible because of its anti‐inflammatory, antioxidant, anticancerous, antiepileptic, antidepressant, immunomodulatory, neuroprotective, antiapoptotic, and antiproliferative effects. Curcumin has potent antioxidant, anti‐inflammatory, antiapoptotic, neurotrophic activities, which support its plausible neuroprotective effects in neurodegenerative disease. However, there is limited information available regarding the clinical efficacy of curcumin in neurodegenerative cases. The low oral bioavailability of curcumin may be speculated as a plausible factor that limits its effects in humans. Therefore, utilization of several approaches for the enhancement of bioavailability may improve clinical outcomes. Furthermore, the use of nanotechnology and a targeted drug delivery system may improve the bioavailability of curcumin. The present review is designed to summarize the molecular mechanisms pertaining to the neuroprotective effects of curcumin and its nanoformulations.  相似文献   

13.
Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll‐like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4‐silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up‐regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide‐treated TLR4 knock‐out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood‐borne noxious agents.

  相似文献   


14.
The presence of both neural and glial precursor cells in the adult central nervous system (CNS) and the capacity of these cells to migrate through this mature structure to areas of pathological damage and injury raises hope for the development of new therapeutic strategies to treat brain injury and disease. Although at present time, the compensatory neurogenesis described after various types of brain pathologies appears to be modest, the development of a strategy promoting the directed mobilization and phenotypic induction of endogenous precursor cells to areas of neural cell loss remains of high interest. The development of such a strategy however is currently thwarted by a limited understanding of the process and factors influencing precursor cell migration. In this review, we will discuss the current knowledge around precursor cell migration in the pathological adult brain with particular focus on the response and fate of precursor sub-populations to neural cell loss and the role of the inflammatory system in mediating precursor cell migration. Through this discussion we will identify particular areas in which further detailed research is required in order to expand our current understanding and aid in the eventual development of a novel therapeutic application.  相似文献   

15.
The present study examined brain and liver derived proteasome complexes to elucidate if there is a differential susceptibility in proteasome complexes from these tissues to undergo inactivation following exposure to oxidative stressors. It then examined the influence of ageing and dietary restriction (DR) on the observed proteasome inactivation. Studies used a filtration based methodology that allows for enrichment of proteasome complexes with less tissue than is required for traditional chromatography procedures. The results indicate that the brain has much lower levels of overall proteasome activity and exhibits increased sensitivity to hydrogen peroxide mediated inactivation as compared to proteasome complexes derived from the liver. Interestingly, the brain proteasome complexes did not appear to have increased susceptibility to 4-hydroxynonenal (HNE)-induced inactivation. Surprisingly, ageing and DR induced minimal effects on oxidative stress mediated proteasome inhibition. These results indicate that the brain not only has lower levels of proteasome activity compared to the liver, but is also more susceptible to inactivation following exposure to some (but certainly not all) oxidative stressors. This data also suggest that ageing and DR may not significantly modulate the resistance of the proteasome to inactivation in some experimental settings.  相似文献   

16.
17.
18.
Most reactive oxygen species (ROS) in living organisms are produced as byproducts of many processes. Being highly active, ROS interact with virtually all cellular components particularly modifying their properties. In this review, detailed analysis of chemical modifications of proteins on their interaction with ROS is given with particular interest in cleavage of polypeptide chains and oxidation of side chains of amino acid residues. Special attention has been paid to identification of products of free radical modification of proteins with a focus on the formation of additional carbonyl groups, which are the most frequently used markers of these processes. Functional consequences of protein modification by ROS depend on the nature of ROS and protein as well as particular conditions of their interaction. The relationship between protein oxidation and functional state of organisms, particularly aging, hyperoxia and hypoxia, and heat shock, as well as with different pathologies has been analyzed. The final part of the article is devoted to possible ways of protecting proteins against oxidation in vivo. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 8, pp. 995–1017.  相似文献   

19.
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrPSc in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrPSc in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrPSc in a prion-infected cell line after treatment with bafilomycin A1. These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases.  相似文献   

20.
《Autophagy》2013,9(11):1604-1620
Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrPSc in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrPSc in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrPSc in a prion-infected cell line after treatment with bafilomycin A1. These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号