首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Dystroglycan is part of the dystrophin-associated protein complex, which joins laminin in the extracellular matrix to dystrophin within the subsarcolemmal cytoskeleton. We have investigated how mutations in the components of the laminin-dystroglycan-dystrophin axis affect the organization and expression of dystrophin-associated proteins by comparing mice mutant for merosin (alpha(2)-laminin, dy), dystrophin (mdx), and dystroglycan (Dag1) using immunohistochemistry and immunoblots. We report that syntrophin and neuronal nitric-oxide synthase are depleted in muscle fibers lacking both dystrophin and dystroglycan. Some fibers deficient in dystroglycan, however, localize dystrophin at the cell surface at levels similar to that in wild-type muscle. Nevertheless, these fibers have signs of degeneration/regeneration including increased cell surface permeability and central nuclei. In these fibers, syntrophin and nitric-oxide synthase are also localized to the plasma membrane, whereas the sarcoglycan complex is disrupted. These results suggest a mechanism of membrane attachment for dystrophin independent of dystroglycan and that the interaction of sarcoglycans with dystrophin requires dystroglycan. The distribution of caveolin-3, a muscle-specific component of caveolae recently found to bind dystroglycan, was affected in dystroglycan- and dystrophin-deficient mice. We also examined alternative mechanisms of cell-extracellular matrix attachment to elucidate how the muscle basement membrane may subsist in the absence of dystroglycan, and we found the alpha(7B) splice variant of the alpha(7) integrin receptor subunit to be up-regulated. These results support the possibility that alpha(7B) integrin compensates in mediating cell-extracellular matrix attachment but cannot rescue the dystrophic phenotype.  相似文献   

3.
The dystrophin-glycoprotein complex and the alpha7beta1 integrin are trans-sarcolemmal linkage systems that connect and transduce contractile forces between muscle fibers and the extracellular matrix. alpha7beta1 is the major laminin binding integrin in skeletal muscle. Different functional variants of this integrin are generated by alternative splicing and post-translational modifications such as glycosylation and ADP-ribosylation. Here we report a species-specific difference in alpha7 chains that results from an intra-peptide proteolytic cleavage, by a serine protease, at the 603RRQ605 site. Site-directed mutagenesis of RRQ to GRQ prevents this cleavage. This RRQ sequence in the alpha7 integrin chain is highly conserved among vertebrates but it is absent in mice. Protein structure modeling indicates this cleavage site is located in an open region between the beta-propeller and thigh domains of the alpha7 chain. Compared with the non-cleavable alpha7 chain, the cleaved form enhances cell adhesion and spreading on laminin. Cleavage of the alpha7 chain is elevated upon myogenic differentiation, and this cleavage may be mediated by urokinase-type plasminogen activator. These results suggest proteolytic cleavage is a novel mechanism that regulates alpha7 integrin functions in skeletal muscle, and that the generation of such cleavage sites is another evolutionary mechanism for expanding and modifying protein functions.  相似文献   

4.
The expression of laminin isoforms and laminin-binding integrin receptors known to occur in muscle was investigated during myogenic regeneration after crush injury. Comparisons were made between dystrophic 129ReJ dy/dy mice, which have reduced laminin alpha2 expression, and their normal littermates. The overall histological pattern of regeneration after crush injury was similar in dy/dy and control muscle, but proceeded faster in dy/dy mice. In vitro studies revealed a greater yield of mononuclear cells extracted from dy/dy muscle and a reduced proportion of desmin-positive cells upon in vitro cultivation, reflecting the presence of inflammatory cells and "preactivated" myoblasts due to ongoing regenerative processes within the endogenous dystrophic lesions. Laminin alpha1 was not detectable in skeletal muscle. Laminin alpha2 was present in basement membranes of mature myofibers and newly formed myotubes in control and dy/dy muscles, albeit weaker in dy/dy. Laminin alpha2-negative myogenic cells were detected in dy/dy and control muscle, suggesting the involvement of other laminin alpha chains in early myogenic differentiation, such as laminin alpha4 and alpha5 which were both transiently expressed in basement membranes of newly formed myotubes of dy/dy and control mice. Integrin beta1 was expressed on endothelial cells, muscle fibers, and peripheral nerves in uninjured muscle and broadened after crush injury to the interstitium where it occurred on myogenic and nonmyogenic cells. Integrin alpha3 was not expressed in uninjured or regenerating muscle, while integrin alpha6 was expressed mainly on endothelial cells and peripheral nerves in uninjured muscle. Upon crush injury integrin alpha6 increased in the interstitium mainly on nonmyogenic cells, including infiltrating leukocytes, endothelial cells, and fibroblasts. In dy/dy muscle, integrin alpha6 occurred on some newly formed myotubes. Integrin alpha7 was expressed on muscle fibers at the myotendinous junction and showed weak and irregular expression on muscle fibers. After crush injury, integrin alpha7 expression extended to the newly formed myotubes and some myoblasts. However, many myoblasts and newly formed myotubes were integrin alpha7 negative. No marked difference was observed in integrin alpha7 expression between dy/dy and control muscle, either uninjured or after crush injury. Only laminin alpha4 and integrin alpha6 expression patterns were notably different between dy/dy and control muscle. Expression of both molecules was more extensive in dy/dy muscle, especially in the interstitium of regenerating areas and on newly formed myotubes. In view of the faster myogenic regeneration observed in dy/dy mice, the data suggest that laminin alpha4 and integrin alpha6 support myogenic regeneration. However, whether these accelerated myogenic effects are a direct consequence of the reduced laminin alpha2 expression in dy/dy mice, or an accentuation of the ongoing regenerative events in focal lesions in the muscle, requires further investigation.  相似文献   

5.
Muscular dystrophy is frequently caused by disruption of the dystrophin-glycoprotein complex (DGC), which links muscle cells to the extracellular matrix. Dystroglycan, a central component of the DGC, serves as a laminin receptor via its extracellular alpha subunit, and interacts with dystrophin (and thus the actin cytoskeleton) through its integral membrane beta subunit. We have removed the function of dystroglycan in zebrafish embryos. In contrast to mouse, where dystroglycan mutations lead to peri-implantation lethality, dystroglycan is dispensable for basement membrane formation during early zebrafish development. At later stages, however, loss of dystroglycan leads to a disruption of the DGC, concurrent with loss of muscle integrity and necrosis. In addition, we find that loss of the DGC leads to loss of sarcomere and sarcoplasmic reticulum organisation. The DGC is required for long-term survival of muscle cells in zebrafish, but is dispensable for muscle formation. Dystroglycan or the DGC is also required for normal sarcomere and sarcoplasmic reticulum organisation. Because zebrafish embryos lacking dystroglycan share several characteristics with human muscular dystrophy, they should serve as a useful model for the disease. In addition, knowing the dystroglycan null phenotype in zebrafish will facilitate the isolation of other molecules involved in muscular dystrophy pathogenesis.  相似文献   

6.
The transition of laminin from a monomeric to a polymerized state is thought to be a crucial step in the development of basement membranes and in the case of skeletal muscle, mutations in laminin can result in severe muscular dystrophies with basement membrane defects. We have evaluated laminin polymer and receptor interactions to determine the requirements for laminin assembly on a cell surface and investigated what cellular responses might be mediated by this transition. We found that on muscle cell surfaces, laminins preferentially polymerize while bound to receptors that included dystroglycan and alpha7beta1 integrin. These receptor interactions are mediated through laminin COOH-terminal domains that are spatially and functionally distinct from NH2-terminal polymer binding sites. This receptor-facilitated self-assembly drives rearrangement of laminin into a cell-associated polygonal network, a process that also requires actin reorganization and tyrosine phosphorylation. As a result, dystroglycan and integrin redistribute into a reciprocal network as do cortical cytoskeleton components vinculin and dystrophin. Cytoskeletal and receptor reorganization is dependent on laminin polymerization and fails in response to receptor occupancy alone (nonpolymerizing laminin). Preferential polymerization of laminin on cell surfaces, and the resulting induction of cortical architecture, is a cooperative process requiring laminin- receptor ligation, receptor-facilitated self-assembly, actin reorganization, and signaling events.  相似文献   

7.
A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.  相似文献   

8.
Microvascular endothelial cells (MEC) use a set of surface receptors to adhere not only to the vascular basement membrane but, during angiogenic stimulation, to the interstitium. We examined how cultured human MEC interact with laminin-rich basement membranes. By using a panel of monoclonal antibodies, we found that MEC cells express a number of integrin-related receptor complexes, including alpha 1 beta 1, alpha 2 beta 1, alpha 3 beta 1, alpha 5 beta 1, alpha 6 beta 1, alpha V beta 3. Attachment to laminin, a major adhesive protein in basement membranes, was studied in detail. Blocking monoclonal antibodies specific to different integrin receptor complexes showed that the alpha 6 beta 1 complex was important for MEC adhesion to laminin. In addition, blocking antibody also implicated the vitronectin receptor (alpha V beta 3) in laminin adhesion. We used ligand affinity chromatography of detergent-solubilized receptor complexes to further define receptor specificity. On laminin-Sepharose columns, we identified several integrin receptor complexes whose affinity for the ligand was dependent on the type of divalent cation present. Several beta 1 complexes, including alpha 1 beta 1, alpha 2 beta 1, and alpha 6 beta 1 bound strongly to laminin. In agreement with the antibody blocking experiments, alpha V beta 3 was found to bind well to laminin. However, unlike binding to its other ligands (e.g., vitronectin, fibrinogen, von Willebrand factor), alpha V beta 3 interaction with laminin did not appear to be Arg-Gly-Asp (RGD) sensitive. Finally, immunofluorescent staining demonstrated both beta 1 and beta 3 complexes in vinculin-positive focal adhesion plaques on the basal surface of MEC adhering to laminin-coated substrates. The results indicate that both these subfamilies of integrin heterodimers are involved in promoting MEC adhesion to laminin and the vascular basement membrane.  相似文献   

9.
We describe a novel interaction between the disintegrin and cysteine-rich (DC) domains of ADAM12 and the integrin alpha7beta1. Integrin alpha7beta1 extracted from human embryonic kidney 293 cells transfected with alpha7 cDNA was retained on an affinity column containing immobilized DC domain of ADAM12. 293 cells stably transfected with alpha7 cDNA adhered to DC-coated wells, and this adhesion was partially inhibited by 6A11 integrin alpha7 function-blocking antibody. The X1 and the X2 extracellular splice variants of integrin alpha7 supported equally well adhesion to the DC protein. Integrin alpha7beta1-mediated cell adhesion to DC had different requirements for Mn2+ than adhesion to laminin. Furthermore, integrin alpha7beta1-mediated cell adhesion to laminin, but not to DC, resulted in efficient cell spreading and phosphorylation of focal adhesion kinase (FAK) at Tyr397. We also show that adhesion of L6 myoblasts to DC is mediated in part by the endogenous integrin alpha7beta1 expressed in these cells. Since integrin alpha7 plays an important role in muscle cell growth, stability, and survival, and since ADAM12 has been implicated in muscle development and regeneration, we postulate that the interaction between ADAM12 and integrin alpha7beta1 may be relevant to muscle development, function, and disease. We also conclude that laminin and the DC domain of ADAM12 represent two functional ligands for integrin alpha7beta1, and adhesion to each of these two ligands via integrin alpha7beta1 triggers different cellular responses.  相似文献   

10.
Human ECV304 cells respond reproducibly by tube formation to complex basement membrane matrices. Laminins are major glycoproteins of basement membranes. We therefore studied the ability of ECV304 cells to attach to defined laminin isoforms and to fibronectin, and identified the involved laminin receptors. The cells bound poorly to fibronectin, to some extent to laminin-1, whereas laminin-2/4 and -10/11 were strong adhesive substrates. Antibody perturbation assays showed that adhesion to laminin-1 was mediated by integrin alpha6beta1, and adhesion to laminin-2/4 by cooperative activity of integrins alpha3beta1 and alpha6beta1. Adhesion of ECV 304 cells to laminin-10/11 was mainly mediated by integrins alpha3beta1, with minor involvement of alpha6beta1/4 and alphavbeta3. Solid-phase binding assays confirmed that integrin alphavbeta3 binds human laminin-10/11 and -10, in an RGD-dependent fashion. Although integrin alphavbeta3 played a very minor role in cell adhesion to laminin-10/11, this interaction facilitated growth factor-induced proliferation of ECV304 cells. In response to FGF-2 or VEGF, the cells proliferated better when attached on laminin-10/11 than on laminin-1, -2/4, or gelatin. The proliferation induced by the joint application of laminin-10/11 and either one of the growth factors could be blocked by antibodies against integrin alphavbeta3. Fragments of several other basement membrane components are known to interact with alphavbeta3. The current data show that that integrin alphavbeta3 can bind intact alpha5-containing laminin trimers. Since the laminin alpha5 chain is broadly expressed in adult basement membranes, this interaction could be physiologically important. Our data suggest that this interaction is involved in the regulation of cellular responses to growth factors known to be involved in epithelial and endothelial development.  相似文献   

11.
Integrins are alphabeta transmembrane receptors that function in key cellular processes, including cell adhesion, differentiation, and extracellular matrix deposition through interactions with extracellular, membrane, and cytoplasmic proteins. We previously identified and cloned a muscle beta1 integrin cytoplasmic binding protein termed MIBP and found that the expression level of MIBP is critical in the decision-making process of terminal myogenic differentiation. We report here that MIBP interacts with the alpha7beta1 integrin but not the alpha5beta1 integrin in C2C12 myoblasts, suggesting an important role of integrin alpha chains in the regulation of the beta1-MIBP interaction. Furthermore, consistent with its selective binding activity toward the alpha7beta1 laminin receptor, we have found that overexpression of MIBP in C2C12 myoblasts resulted in a significant reduction of cell adhesion to laminin and inhibition of laminin matrix deposition. By contrast, neither cell adhesion to fibronectin nor fibronectin matrix deposition was significantly altered in cells overexpressing MIBP. Finally, we show that both the protein level and tyrosine phosphorylation of paxillin, a key signaling molecule involved in the cellular control of myogenic differentiation, are increased by MIBP. These results suggest that MIBP functions in the control of myogenic differentiation by regulating alpha7beta1 integrin-mediated cell interactions with laminin matrix and intracellular signaling through paxillin.  相似文献   

12.
Laminins are extracellular matrix glycoproteins that are involved in various cellular functions, including adhesion, proliferation, and differentiation. In this study, we examine the expression patterns and the cellular origins of the laminin alpha2, alpha4, and alpha5 chains in the developing mouse intestine and in in vitro mouse/chick or chick/mouse interspecies hybrid intestines. In situ hybridization and Northern blot analysis revealed that mRNA levels for all three laminin alpha chains are highest in the fetal intestine undergoing intense morphogenetic movements. Laminin alpha4 mRNA and polypeptide are associated with mesenchyme-derived cell populations such as endothelium and smooth muscle. In contrast, laminin alpha2 and alpha5 chains participate in the structural organization of the subepithelial basement membrane and, in the mature intestine, show a complementary pattern of expression. All three laminin alpha chains occur in the smooth muscle basement membrane, with a differential expression of laminin alpha5 chain in the circular and longitudinal smooth muscle layers. The cellular origin of laminin alpha2 and alpha5 chains found in the subepithelial cell basement membrane was studied by immunocytochemical analysis of mouse/chick or chick/mouse interspecies hybrid intestines at various stages of development using mouse-specific antibodies. Laminin alpha2 was found to be deposited into the basement membrane exclusively by mesenchymal cells, while the laminin alpha5 chain was deposited by both epithelial and mesenchymal cells in an apparently developmentally regulated pattern. We conclude that (1) multiple laminin alpha chains are expressed in the intestine, implying specific roles for individual laminin isoforms during intestinal development, and (2) reciprocal epithelial/mesenchymal interactions are essential for the formation of a structured subepithelial basement membrane.  相似文献   

13.
Deposition of laminin 5 over exposed dermal collagen in epidermal wounds is an early event in repair of the basement membrane. We report that deposition of laminin 5 onto collagen switches adhesion and signaling from collagen-dependent to laminin 5-dependent. Ligation of laminin 5 by integrin alpha(6)beta(4) activates phosphoinositide 3-OH-kinase (PI3K) signaling. This activation allows for adhesion and spreading via integrin alpha(3)beta(1) on laminin 5 independent of RhoGTPase, a regulator of actin stress fibers. In contrast, adhesion and spreading on collagen via alpha(2)beta(1) is Rho-dependent and is inhibited by toxin B, a Rho inhibitor. Deposition of laminin 5 and ligation of alpha(6)beta(4) increases PI3K-dependent production of phosphoinositide di- and triphosphates, PI3K activity, and phosphorylation of downstream target protein c-Jun NH(2)-terminal kinase. Conversely, blocking laminin 5-deposition with brefeldin A, an inhibitor of vesicle transport, or with anti-laminin 5 monoclonal antibodies abolishes the PI3K-dependent spreading mediated by alpha(3)beta(1) and phosphorylation of c-Jun NH(2)-terminal kinase. Studies with keratinocytes lacking alpha(6)beta(4) or laminin 5 confirm that deposition of laminin 5 and ligation by alpha(6)beta(4) are required for PI3K-dependent spreading via alpha(3)beta(1). We suggest that deposition of laminin 5 onto the collagen substratum, as in wound repair, enables human foreskin keratinocytes to interact via alpha(6)beta(4) and to switch from a RhoGTPase-dependent adhesion on collagen to a PI3K-dependent adhesion and spreading mediated by integrin alpha(3)beta(1) on laminin 5.  相似文献   

14.
Mutations in the gene encoding laminin (LM) alpha2 chain cause congenital muscular dystrophy. Here, we show that extraocular muscle (EOM) is spared upon complete LMalpha2 chain absence. The major LM chains in limb muscle basement membranes are alpha2, beta1, beta2 and gamma1 whereas alpha2, alpha4, beta1, beta2 and gamma1 chains are expressed in EOM. Expression of LMalpha4 chain mRNA is further increased in LMalpha2 chain deficient EOM. Mainly integrin alpha7X1 subunit, which binds to laminin-411, is expressed in EOM and in contrast to dystrophic limb muscle, sustained integrin alpha7B expression is seen in LMalpha2 chain deficient EOM. We propose that LMalpha4 chain, possibly by binding to integrin alpha7BX1beta1D, protects EOM in LMalpha2 chain deficient muscular dystrophy.  相似文献   

15.
Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.  相似文献   

16.
During embryogenesis, the neural stem cells (NSC) of the developing cerebral cortex are located in the ventricular zone (VZ) lining the cerebral ventricles. They exhibit apical and basal processes that contact the ventricular surface and the pial basement membrane, respectively. This unique architecture is important for VZ physical integrity and fate determination of NSC daughter cells. In addition, the shorter apical process is critical for interkinetic nuclear migration (INM), which enables VZ cell mitoses at the ventricular surface. Despite their importance, the mechanisms required for NSC adhesion to the ventricle are poorly understood. We have shown previously that one class of candidate adhesion molecules, laminins, are present in the ventricular region and that their integrin receptors are expressed by NSC. However, prior studies only demonstrate a role for their interaction in the attachment of the basal process to the overlying pial basement membrane. Here we use antibody-blocking and genetic experiments to reveal an additional and novel requirement for laminin/integrin interactions in apical process adhesion and NSC regulation. Transient abrogation of integrin binding and signalling using blocking antibodies to specifically target the ventricular region in utero results in abnormal INM and alterations in the orientation of NSC divisions. We found that these defects were also observed in laminin α2 deficient mice. More detailed analyses using a multidisciplinary approach to analyse stem cell behaviour by expression of fluorescent transgenes and multiphoton time-lapse imaging revealed that the transient embryonic disruption of laminin/integrin signalling at the VZ surface resulted in apical process detachment from the ventricular surface, dystrophic radial glia fibers, and substantial layering defects in the postnatal neocortex. Collectively, these data reveal novel roles for the laminin/integrin interaction in anchoring embryonic NSCs to the ventricular surface and maintaining the physical integrity of the neocortical niche, with even transient perturbations resulting in long-lasting cortical defects.  相似文献   

17.
Mutations in the gene encoding laminin alpha2 chain cause congenital muscular dystrophy type 1A. In skeletal muscle, laminin alpha2 chain binds at least two receptor complexes: the dystrophin-glycoprotein complex and integrin alpha7beta1. To gain insight into the molecular mechanisms underlying this disorder, we performed gene expression profiling of laminin alpha2 chain-deficient mouse limb muscle. One of the down-regulated genes encodes a protein called Cib2 (calcium- and integrin-binding protein 2) whose expression and function is unknown. However, the closely related Cib1 has been reported to bind integrin alphaIIb and may be involved in outside-in-signaling in platelets. Since Cib2 might be a novel integrin alpha7beta1-binding protein in muscle, we have studied Cib2 expression in the developing and adult mouse. Cib2 mRNA is mainly expressed in the developing central nervous system and in developing and adult skeletal muscle. In skeletal muscle, Cib2 colocalizes with the integrin alpha7B subunit at the sarcolemma and at the neuromuscular and myotendinous junctions. Finally, we demonstrate that Cib2 is a calcium-binding protein that interacts with integrin alpha7Bbeta1D. Thus, our data suggest a role for Cib2 as a cytoplasmic effector of integrin alpha7Bbeta1D signaling in skeletal muscle.  相似文献   

18.
Cerebral amyloid angiopathy (CAA) is a major feature of Alzheimer's disease pathology. In CAA, degeneration of vascular smooth muscle cells (VSMCs) occurs close to regions of the basement membrane where the amyloid protein (Abeta) builds up. In this study, the possibility that Abeta disrupts adhesive interactions between VSMCs and the basement membrane was examined. VSMCs were cultured on a commercial basement membrane substrate (Matrigel). The presence of Abeta in the Matrigel decreased cell-substrate adhesion and cell viability. Full-length oligomeric Abeta was required for the effect, as N- and C-terminally truncated peptide analogues did not inhibit adhesion. Abeta that was fluorescently labelled at the N-terminus (fluo-Abeta) bound to Matrigel as well as to the basement membrane heparan sulfate proteoglycan (HSPG) perlecan and laminin. Adhesion of VSMCs to perlecan or laminin was decreased by Abeta. As perlecan influences VSMC viability through the extracellular signal-regulated kinase (ERK)1/2 signalling pathway, the effect of Abeta1-40 on ERK1/2 phosphorylation was examined. The level of phospho-ERK1/2 was decreased in cells following Abeta treatment. An inhibitor of ERK1/2 phosphorylation enhanced the effect of Abeta on cell adhesion. The studies suggest that Abeta can decrease VSMC viability by disrupting VSMC-extracellular matrix (ECM) adhesion.  相似文献   

19.
Laminins (comprised of alpha, beta, and gamma chains) are heterotrimeric glycoproteins integral to all basement membranes. The function of the laminin alpha5 chain in the developing intestine was defined by analysing laminin alpha5(-/-) mutants and by grafting experiments. We show that laminin alpha5 plays a major role in smooth muscle organisation and differentiation, as excessive folding of intestinal loops and delay in the expression of specific markers are observed in laminin alpha5(-/-) mice. In the subepithelial basement membrane, loss of alpha5 expression was paralleled by ectopic or accelerated deposition of laminin alpha2 and alpha4 chains; this may explain why no obvious defects were observed in the villous form and enterocytic differentiation. This compensation process is attributable to mesenchyme-derived molecules as assessed by chick/mouse alpha5(-/-) grafted associations. Lack of the laminin alpha5 chain was accompanied by a decrease in epithelial alpha3beta1 integrin receptor expression adjacent to the epithelial basement membrane and of Lutheran blood group glycoprotein in the smooth muscle cells, indicating that these receptors are likely mediating interactions with laminin alpha5-containing molecules. Taken together, the data indicate that the laminin alpha5 chain is essential for normal development of the intestinal smooth muscle and point to possible mesenchyme-derived compensation to promote normal intestinal morphogenesis when laminin alpha5 is absent.  相似文献   

20.
Microvascular endothelial cells (MEC) must use a set of surface receptors to adhere not only to the vascular basement membrane but, during angiogenic stimulation, to the interstitium. We examined how cultured MEC isolated from human foreskin interact with their subendothelial matrix. MEC were able to attach to diverse extracellular matrix proteins, including fibronectin (Fn), vitronectin (Vn), laminin (Ln), type I and IV collagen, as well as to fibrinogen and gelatin. Adhesion to Fn, but not to laminin or collagens, was specifically blocked in the presence of Arg-Gly-Asp (RGD)-containing peptides. When surface radioiodinated MEC were solubilized and subjected to affinity chromatography on Fn-Sepharose columns, two polypeptides of 150 and 125 kD, corresponding to the integrin heterodimer alpha 5 beta 1, were identified. MEC also express a complex of 150 (alpha) and 95 kD (beta 3) that is related to the Vn receptor. Immunofluorescent staining of MEC cultures with antibodies to the integrin beta 1 subunit demonstrated receptors on the basolateral surface at focal adhesion plaques that co-localized with vinculin and with Fn-positive matrix fibers. Occasionally, antibodies to the Vn receptor stained the vinculin-positive focal adhesion plaques that frequently co-localized with the beta 1 complex. However, in cultures of MEC that were attached to substrates coated with alternating strips of Fn and Vn, the beta 1 complex was preferentially localized to the Fn substrate, while the Vn receptor was concentrated on the Vn substrate. The results indicate that MEC express at least two different heterodimer adhesion receptors that belong to the integrin super-family and appear to have distinct ligand specificities: the Fn receptor and the Vn receptor. These receptors mediate cell adhesion to the extracellular matrix and presumably have an important role in hemostasis and neovascularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号