首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the double mutant (k1 k3) displayed rapid chlorosis upon high light stress. Also, k1 k3 showed a slower, but irreversible, senescence-like phenotype during moderate light stress that was phenocopied by drought and nitrogen limitation, but not cold stress. This senescence-like phenotype involved degradation of the photosystem II core and upregulation of chlorophyll degradation. The senescence-like phenotype was independent of the EXECUTER pathway that mediates genetically controlled cell death from the chloroplast and correlated with increased levels of the singlet oxygen–derived carotenoid β-cyclocitral, a retrograde plastid signal. Total PG volume increased during light stress in wild type and k1 k3 plants, but with different size distributions. Isolated PGs from k1 k3 showed a modified prenyl-lipid composition, suggesting reduced activity of PG-localized tocopherol cyclase (VTE1), and was consistent with loss of carotenoid cleavage dioxygenase 4. Plastid jasmonate biosynthesis enzymes were recruited to the k1 k3 PGs but not wild-type PGs, while pheophytinase, which is involved in chlorophyll degradation, was induced in k1 k3 and not wild-type plants and was localized to PGs. Thus, the ABC1K1/3 complex contributes to PG function in prenyl-lipid metabolism, stress response, and thylakoid remodeling.  相似文献   

2.
3.
The orange carotenoid protein (OCP) serves as a sensor of light intensity and an effector of phycobilisome (PB)–associated photoprotection in cyanobacteria. Structurally, the OCP is composed of two distinct domains spanned by a single carotenoid chromophore. Functionally, in response to high light, the OCP converts from a dark-stable orange form, OCPO, to an active red form, OCPR. The C-terminal domain of the OCP has been implicated in the dynamic response to light intensity and plays a role in switching off the OCP’s photoprotective response through its interaction with the fluorescence recovery protein. The function of the N-terminal domain, which is uniquely found in cyanobacteria, is unclear. To investigate its function, we isolated the N-terminal domain in vitro using limited proteolysis of native OCP. The N-terminal domain retains the carotenoid chromophore; this red carotenoid protein (RCP) has constitutive PB fluorescence quenching activity comparable in magnitude to that of active, full-length OCPR. A comparison of the spectroscopic properties of the RCP with OCPR indicates that critical protein–chromophore interactions within the C-terminal domain are weakened in the OCPR form. These results suggest that the C-terminal domain dynamically regulates the photoprotective activity of an otherwise constitutively active carotenoid binding N-terminal domain.  相似文献   

4.
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.  相似文献   

5.
Abscisic acid (ABA) signaling plays a major role in root system development, regulating growth and root architecture. However, the precise localization of ABA remains undetermined. Here, we present a mechanism in which nitrate signaling stimulates the release of bioactive ABA from the inactive storage form, ABA-glucose ester (ABA-GE). We found that ABA accumulated in the endodermis and quiescent center of Arabidopsis thaliana root tips, mimicking the pattern of SCARECROW expression, and (to lower levels) in the vascular cylinder. Nitrate treatment increased ABA levels in root tips; this stimulation requires the activity of the endoplasmic reticulum-localized, ABA-GE-deconjugating enzyme β-GLUCOSIDASE1, but not de novo ABA biosynthesis. Immunogold labeling demonstrated that ABA is associated with cytoplasmic structures near, but not within, the endoplasmic reticulum. These findings demonstrate a mechanism for nitrate-regulated root growth via regulation of ABA accumulation in the root tip, providing insight into the environmental regulation of root growth.  相似文献   

6.
7.
8.
In plants, fatty acids are synthesized within the plastid and need to be distributed to the different sites of lipid biosynthesis within the cell. Free fatty acids released from the plastid need to be converted to their corresponding coenzyme A thioesters to become metabolically available. This activation is mediated by long-chain acyl-coenzyme A synthetases (LACSs), which are encoded by a family of nine genes in Arabidopsis (Arabidopsis thaliana). So far, it has remained unclear which of the individual LACS activities are involved in making plastid-derived fatty acids available to cytoplasmic glycerolipid biosynthesis. Because of its unique localization at the outer envelope of plastids, LACS9 was regarded as a candidate for linking plastidial fatty export and cytoplasmic use. However, data presented in this study show that LACS9 is involved in fatty acid import into the plastid. The analyses of mutant lines revealed strongly overlapping functions of LACS4 and LACS9 in lipid trafficking from the endoplasmic reticulum to the plastid. In vivo labeling experiments with lacs4 lacs9 double mutants suggest strongly reduced synthesis of endoplasmic reticulum-derived lipid precursors, which are required for the biosynthesis of glycolipids in the plastids. In conjunction with this defect, double-mutant plants accumulate significant amounts of linoleic acid in leaf tissue.Two discrete but intimately connected pathways are involved in plant glycerolipid biosynthesis (Roughan et al., 1980). Both pathways follow exactly the same scheme of synthesis within the plastid and at the endoplasmic reticulum (ER) to assemble phosphatidic acid (PA) by two consecutive acylation reactions of glycerol-3-phosphate. Essential substrates for both pathways are fatty acids that are synthesized exclusively in plastids. De novo synthesized fatty acids can feed directly into the so-called prokaryotic lipid synthesis pathway localized within the plastid to produce phosphatidylglycerol (PG), the so-called C16:3 plants (e.g., Arabidopsis [Arabidopsis thaliana]), and also, other thylakoid lipids, like sulfoquinovosyldiacylglycerol, monogalactosyldiacylglycerol (MGDG), and digalactosyldiacylglycerol (DGDG; Heinz and Roughan, 1983). In addition, plastid-derived fatty acids are also substrates for eukaryotic lipid biosynthesis at the ER to produce important membrane lipid precursors, like PA and diacylglycerol (DAG). The main products of the lipid biosynthesis pathway in the ER are, however, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol. Recent studies revealed an additional mechanism to incorporate plastid-derived fatty acids at the ER by acyl editing of PC (Bates et al., 2007). In the proposed model (also designated as the Lands cycle; Lands, 1958), PC is continuously converted to lyso-PC, which becomes reacylated by newly exported fatty acids to generate PC again. However, irrespective of the route taken to attach the fatty acids to the glycerol backbone, the interconnection between plastidial and cytoplasmic lipid metabolism is, in most plant species, further complicated by the fact that the eukaryotic pathway is not only generating lipids for all extraplastidial compartments but also, synthesizing lipid precursors, which are delivered back to the plastid to become thylakoid lipids. Consequently, plastidial membrane lipids represent a mixture of molecules partially synthesized within the plastid and partially assembled at the ER. The contribution of ER and plastidial lipid synthesis to the overall mixture of thylakoid lipids differs strongly between different plant species, but in Arabidopsis, both sites of synthesis are responsible for approximately equal amounts of chloroplast lipids (Browse et al., 1986). Subtle biochemical differences reveal the site of synthesis of a specific lipid molecule. Because of different substrate specificities of the acyltransferases located at the ER and in the plastid, the resulting lipid molecules can be distinguished based on the fatty acids attached to the sn-2 position of the glycerol backbone. Whereas the lysophosphatidyl acyltransferase at the ER is highly specific for 18-carbon fatty acids, its plastidial homolog incorporates exclusively 16-carbon fatty acids into the sn-2 position.Another important difference between plastidial and cytoplasmic lipid metabolism is defined by the nature of the fatty acid substrate. In both cases, fatty acid thioesters are used; however, within the plastid, the fatty acids are provided as acyl-acyl carrier proteins (acyl-ACPs), whereas in the cytoplasm, acyl-CoAs are the established substrates. Acyl-ACP produced by plastidial fatty acid synthase can be used directly by enzymes of the plastidial lipid biosynthesis pathway, but fatty acids need to be exported and converted to acyl-CoA by long-chain acyl-CoA synthetases (LACS) to become substrate for the pathway operating at the ER. The precise mechanism of the fatty acid transport through the plastidial membrane is still unknown; however, the findings of acyl-ACP thioesterase activity in the stroma of plastids (Ohlrogge et al., 1978, 1979) and LACS activity at the outer envelope (Andrews and Keegstra, 1983; Block et al., 1983) suggested both enzymes to be involved in the export of fatty acids from plastids. This model was challenged by the identification of LACS9 as the major plastidial LACS isoform in Arabidopsis and the finding that its inactivation did not result in any substantial changes in lipid composition (Schnurr et al., 2002). Because LACS activity is encoded in Arabidopsis by a small gene family comprising nine genes (Shockey et al., 2002), there must be other LACS isoforms involved in providing acyl-CoA substrate to cytoplasmic lipid metabolism. Surprisingly, none of the lacs mutant lines analyzed so far, including single mutants of all members of the enzyme family, showed pronounced effects on glycerolipid metabolism. The data seem to suggest a network of overlapping LACS activities concealing the effects of individual members of the enzyme family. It may also indicate that mutual interactions between the different LACS enzymes are still poorly understood. To elucidate such interactions and identify those LACS activities contributing to glycerolipid metabolism, we established a comprehensive mutant collection comprising all possible double-mutant lines based on nine members of the LACS gene family. The individual mutants of this collection were screened for visual phenotypes potentially associated with modifications in lipid biosynthesis.Here, we show overlapping functions of LACS4 and LACS9 in Arabidopsis. The combined inactivation of both proteins results in severe morphological phenotypes of the adult plant that are tightly linked to changes in the fatty acid metabolism. The results suggest that both LACS activities are involved in fatty acid channeling and lipid processing. But instead of contributing to fatty acid export from the plastid, both proteins were found to be involved in the process of retrograde lipid flux from the ER to the plastid.  相似文献   

9.
Divinyl reductase (DVR) converts 8-vinyl groups on various chlorophyll intermediates to ethyl groups, which is indispensable for chlorophyll biosynthesis. To date, five DVR activities have been detected, but adequate evidence of enzymatic assays using purified or recombinant DVR proteins has not been demonstrated, and it is unclear whether one or multiple enzymes catalyze these activities. In this study, we systematically carried out enzymatic assays using four recombinant DVR proteins and five divinyl substrates and then investigated the in vivo accumulation of various chlorophyll intermediates in rice (Oryza sativa), maize (Zea mays), and cucumber (Cucumis sativus). The results demonstrated that both rice and maize DVR proteins can convert all of the five divinyl substrates to corresponding monovinyl compounds, while both cucumber and Arabidopsis (Arabidopsis thaliana) DVR proteins can convert three of them. Meanwhile, the OsDVR (Os03g22780)-inactivated 824ys mutant of rice exclusively accumulated divinyl chlorophylls in its various organs during different developmental stages. Collectively, we conclude that a single DVR with broad substrate specificity is responsible for reducing the 8-vinyl groups of various chlorophyll intermediates in higher plants, but DVR proteins from different species have diverse and differing substrate preferences, although they are homologous.Chlorophyll (Chl) molecules universally exist in photosynthetic organisms. As the main component of the photosynthetic pigments, Chl molecules perform essential processes of absorbing light and transferring the light energy in the reaction center of the photosystems (Fromme et al., 2003). Based on the number of vinyl side chains, Chls are classified into two groups, 3,8-divinyl (DV)-Chl and 3-monovinyl (MV)-Chl. The DV-Chl molecule contains two vinyl groups at positions 3 and 8 of the tetrapyrrole macrocycle, whereas the MV-Chl molecule contains a vinyl group at position 3 and an ethyl group at position 8 of the macrocycle. Almost all of the oxygenic photosynthetic organisms contain MV-Chls, with the exceptions of some marine picophytoplankton species that contain only DV-Chls as their primary photosynthetic pigments (Chisholm et al., 1992; Goericke and Repeta, 1992; Porra, 1997).The classical single-branched Chl biosynthetic pathway proposed by Granick (1950) and modified by Jones (1963) assumed the rapid reduction of the 8-vinyl group of DV-protochlorophyllide (Pchlide) catalyzed by a putative 8-vinyl reductase. Ellsworth and Aronoff (1969) found evidence for both MV and DV forms of several Chl biosynthetic intermediates between magnesium-protoporphyrin IX monomethyl ester (MPE) and Pchlide in Chlorella spp. mutants. Belanger and Rebeiz (1979, 1980) reported that the Pchlide pool of etiolated higher plants contains both MV- and DV-Pchlide. Afterward, following the further detection of MV- and DV-tetrapyrrole intermediates and their biosynthetic interconversion in tissues and extracts of different plants (Belanger and Rebeiz, 1982; Duggan and Rebeiz, 1982; Tripathy and Rebeiz, 1986, 1988; Parham and Rebeiz, 1992, 1995; Kim and Rebeiz, 1996), a multibranched Chl biosynthetic heterogeneity was proposed (Rebeiz et al., 1983, 1986, 1999; Whyte and Griffiths, 1993; Kolossov and Rebeiz, 2010).Biosynthetic heterogeneity refers to the biosynthesis of a particular metabolite by an organelle, tissue, or organism via multiple biosynthetic routes. Varieties of reports lead to the assumption that Chl biosynthetic heterogeneity originates mainly in parallel DV- and MV-Chl biosynthetic routes. These routes are interconnected by 8-vinyl reductases that convert DV-tetrapyrroles to MV-tetrapyrroles by conversion of the vinyl group at position 8 of ring B to the ethyl group (Parham and Rebeiz, 1995; Rebeiz et al., 2003). DV-MPE could be converted to MV-MPE in crude homogenates from etiolated wheat (Triticum aestivum) seedlings (Ellsworth and Hsing, 1974). Exogenous DV-Pchlide could be partially converted to MV-Pchlide in barley (Hordeum vulgare) plastids (Tripathy and Rebeiz, 1988). 8-Vinyl chlorophyllide (Chlide) a reductases in etioplast membranes isolated from etiolated cucumber (Cucumis sativus) cotyledons and barley and maize (Zea mays) leaves were found to be very active in the conversion of exogenous DV-Chlide a to MV-Chlide a (Parham and Rebeiz, 1992, 1995). Kim and Rebeiz (1996) suggested that Chl biosynthetic heterogeneity in higher plants may originate at the level of DV magnesium-protoporphyrin IX (Mg-Proto) and would be mediated by the activity of a putative 8-vinyl Mg-Proto reductase in barley etiochloroplasts and plastid membranes. However, since these reports did not use purified or recombinant enzyme, it is not clear whether the reductions of the 8-vinyl groups of various Chl intermediates are catalyzed by one enzyme of broad specificity or by multiple enzymes of narrow specificity, which actually has become one of the focus issues in Chl biosynthesis.Nagata et al. (2005) and Nakanishi et al. (2005) independently identified the AT5G18660 gene of Arabidopsis (Arabidopsis thaliana) as an 8-vinyl reductase, namely, divinyl reductase (DVR). Chew and Bryant (2007) identified the DVR BciA (CT1063) gene of the green sulfur bacterium Chlorobium tepidum, which is homologous to AT5G18660. An enzymatic assay using a recombinant Arabidopsis DVR (AtDVR) on five DV substrates revealed that the major substrate of AtDVR is DV-Chlide a, while the other four DV substrates could not be converted to corresponding MV compounds (Nagata et al., 2007). Nevertheless, a recombinant BciA is able to reduce the 8-vinyl group of DV-Pchlide to generate MV-Pchlide (Chew and Bryant, 2007). Recently, we identified the rice (Oryza sativa) DVR encoded by Os03g22780 that has sequence similarity with the Arabidopsis DVR gene AT5G18660. We also confirmed that the recombinant rice DVR (OsDVR) is able to not only convert DV-Chlide a to MV-Chlide a but also to convert DV-Chl a to MV-Chl a (Wang et al., 2010). Thus, it is possible that the reductions of the 8-vinyl groups of various Chl biosynthetic intermediates are catalyzed by one enzyme of broad specificity.In this report, we extended our studies to four DVR proteins and five DV substrates. First, ZmDVR and CsDVR genes were isolated from maize and cucumber genomes, respectively, using a homology-based cloning approach. Second, enzymatic assays were systematically carried out using recombinant OsDVR, ZmDVR, CsDVR, and AtDVR as representative DVR proteins and using DV-Chl a, DV-Chlide a, DV-Pchlide a, DV-MPE, and DV-Mg-Proto as DV substrates. Third, we examined the in vivo accumulations of various Chl intermediates in rice, maize, and cucumber. Finally, we systematically investigated the in vivo accumulations of Chl and its various intermediates in the OsDVR (Os03g22780)-inactivated 824ys mutant of rice (Wang et al., 2010). The results strongly suggested that a single DVR protein with broad substrate specificity is responsible for reducing the 8-vinyl groups of various intermediate molecules of Chl biosynthesis in higher plants, but DVR proteins from different species could have diverse and differing substrate preferences even though they are homologous.  相似文献   

10.
11.
12.
13.
14.
15.
Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.  相似文献   

16.
Plant architecture is determined by meristems that initiate leaves during vegetative development and flowers during reproductive development. Maize (Zea mays) inflorescences are patterned by a series of branching events, culminating in floral meristems that produce sexual organs. The maize fuzzy tassel (fzt) mutant has striking inflorescence defects with indeterminate meristems, fasciation, and alterations in sex determination. fzt plants have dramatically reduced plant height and shorter, narrower leaves with leaf polarity and phase change defects. We positionally cloned fzt and discovered that it contains a mutation in a dicer-like1 homolog, a key enzyme required for microRNA (miRNA) biogenesis. miRNAs are small noncoding RNAs that reduce target mRNA levels and are key regulators of plant development and physiology. Small RNA sequencing analysis showed that most miRNAs are moderately reduced in fzt plants and a few miRNAs are dramatically reduced. Some aspects of the fzt phenotype can be explained by reduced levels of known miRNAs, including miRNAs that influence meristem determinacy, phase change, and leaf polarity. miRNAs responsible for other aspects of the fzt phenotype are unknown and likely to be those miRNAs most severely reduced in fzt mutants. The fzt mutation provides a tool to link specific miRNAs and targets to discrete phenotypes and developmental roles.  相似文献   

17.
Reactive oxygen species (ROS) can function as signaling molecules, regulating key aspects of plant development, or as toxic compounds leading to oxidative damage. In this article, we show that the regulation of ROS production during megagametogenesis is largely dependent on MSD1, a mitochondrial Mn-superoxide dismutase. Wild-type mature embryo sacs show ROS exclusively in the central cell, which appears to be the main source of ROS before pollination. Accordingly, MSD1 shows a complementary expression pattern. MSD1 expression is elevated in the egg apparatus at maturity but is downregulated in the central cell. The oiwa mutants are characterized by high levels of ROS detectable in both the central cell and the micropylar cells. Remarkably, egg apparatus cells in oiwa show central cell features, indicating that high levels of ROS result in the expression of central cell characteristic genes. Notably, ROS are detected in synergid cells after pollination. This ROS burst depends on stigma pollination but precedes fertilization, suggesting that embryo sacs sense the imminent arrival of pollen tubes and respond by generating an oxidative environment. Altogether, we show that ROS play a crucial role during female gametogenesis and fertilization. MSD1 activity seems critical for maintaining ROS localization and important for embryo sac patterning.  相似文献   

18.
The mechanism underlying microtubule (MT) generation in plants has been primarily studied using the cortical MT array, in which fixed-angled branching nucleation and katanin-dependent MT severing predominate. However, little is known about MT generation in the endoplasm. Here, we explored the mechanism of endoplasmic MT generation in protonemal cells of Physcomitrella patens. We developed an assay that utilizes flow cell and oblique illumination fluorescence microscopy, which allowed visualization and quantification of individual MT dynamics. MT severing was infrequently observed, and disruption of katanin did not severely affect MT generation. Branching nucleation was observed, but it showed markedly variable branch angles and was occasionally accompanied by the transport of nucleated MTs. Cytoplasmic nucleation at seemingly random locations was most frequently observed and predominated when depolymerized MTs were regrown. The MT nucleator γ-tubulin was detected at the majority of the nucleation sites, at which a single MT was generated in random directions. When γ-tubulin was knocked down, MT generation was significantly delayed in the regrowth assay. However, nucleation occurred at a normal frequency in steady state, suggesting the presence of a γ-tubulin-independent backup mechanism. Thus, endoplasmic MTs in this cell type are generated in a less ordered manner, showing a broader spectrum of nucleation mechanisms in plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号