首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.  相似文献   

2.
The use of spatially explicit models (SEMs) in ecology has grown enormously in the past two decades. One major advancement has been that fine-scale details of landscapes, and of spatially dependent biological processes, such as dispersal and invasion, can now be simulated with great precision, due to improvements in computer technology. Many areas of modeling have shifted toward a focus on capturing these fine-scale details, to improve mechanistic understanding of ecosystems. However, spatially implicit models (SIMs) have played a dominant role in ecology, and arguments have been made that SIMs, which account for the effects of space without specifying spatial positions, have an advantage of being simpler and more broadly applicable, perhaps contributing more to understanding. We address this debate by comparing SEMs and SIMs in examples from the past few decades of modeling research. We argue that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions, such as spatial heterogeneities, organism behaviors, and other contingencies, produce dynamics and patterns that usually cannot be incorporated into simpler SIMs. SEMs are also able to describe mechanisms at the local scale that can create amplifying positive feedbacks at that scale, creating emergent patterns at larger scales, and therefore are important to basic ecological theory. We review the use of SEMs at the level of populations, interacting populations, food webs, and ecosystems and argue that SEMs are not only essential in pragmatic issues, but must play a role in the understanding of causal relationships on landscapes.  相似文献   

3.
4.
Anopheles mosquitoes transmit malaria, a major public health problem among many African countries. One of the most effective methods to control malaria is by controlling the Anopheles mosquito vectors that transmit the parasites. Mathematical models have both predictive and explorative utility to investigate the pros and cons of different malaria control strategies. We have developed a C++ based, stochastic spatially explicit model (ANOSPEX; Ano phelesSpatially-Explicit) to simulate Anopheles metapopulation dynamics. The model is biologically rich, parameterized by field data, and driven by field-collected weather data from Macha, Zambia. To preliminarily validate ANOSPEX, simulation results were compared to field mosquito collection data from Macha; simulated and observed dynamics were similar. The ANOSPEX model will be useful in a predictive and exploratory manner to develop, evaluate and implement traditional and novel strategies to control malaria, and for understanding the environmental forces driving Anopheles population dynamics.  相似文献   

5.
Ultraconserved elements (UCEs) are stretches of hundreds of nucleotides with highly conserved cores flanked by variable regions. Although the selective forces responsible for the preservation of UCEs are unknown, they are nonetheless believed to contain phylogenetically meaningful information from deep to shallow divergence events. Phylogenetic applications of UCEs assume the same degree of rate heterogeneity applies across the entire locus, including variable flanking regions. We present a Wright–Fisher model of selection on nucleotides (SelON) which includes the effects of mutation, drift, and spatially varying, stabilizing selection for an optimal nucleotide sequence. The SelON model assumes the strength of stabilizing selection follows a position-dependent Gaussian function whose exact shape can vary between UCEs. We evaluate SelON by comparing its performance to a simpler and spatially invariant GTR+Γ model using an empirical data set of 400 vertebrate UCEs used to determine the phylogenetic position of turtles. We observe much improvement in model fit of SelON over the GTR+Γ model, and support for turtles as sister to lepidosaurs. Overall, the UCE-specific parameters SelON estimates provide a compact way of quantifying the strength and variation in selection within and across UCEs. SelON can also be extended to include more realistic mapping functions between sequence and stabilizing selection as well as allow for greater levels of rate heterogeneity. By more explicitly modeling the nature of selection on UCEs, SelON and similar approaches can be used to better understand the biological mechanisms responsible for their preservation across highly divergent taxa and long evolutionary time scales.  相似文献   

6.
Scholarly communication is at an unprecedented turning point created in part by the increasing saliency of data stewardship and data sharing. Formal data management plans represent a new emphasis in research, enabling access to data at higher volumes and more quickly, and the potential for replication and augmentation of existing research. Data sharing has recently transformed the practice, scope, content, and applicability of research in several disciplines, in particular in relation to spatially specific data. This lends exciting potentiality, but the most effective ways in which to implement such changes, particularly for disciplines involving human subjects and other sensitive information, demand consideration. Data management plans, stewardship, and sharing, impart distinctive technical, sociological, and ethical challenges that remain to be adequately identified and remedied. Here, we consider these and propose potential solutions for their amelioration.  相似文献   

7.

Background

Independence between observations is a standard prerequisite of traditional statistical tests of association. This condition is, however, violated when autocorrelation is present within the data. In the case of variables that are regularly sampled in space (i.e. lattice data or images), such as those provided by remote-sensing or geographical databases, this problem is particularly acute. Because analytic derivation of the null probability distribution of the test statistic (e.g. Pearson''s r) is not always possible when autocorrelation is present, we propose instead the use of a Monte Carlo simulation with surrogate data.

Methodology/Principal Findings

The null hypothesis that two observed mapped variables are the result of independent pattern generating processes is tested here by generating sets of random image data while preserving the autocorrelation function of the original images. Surrogates are generated by matching the dual-tree complex wavelet spectra (and hence the autocorrelation functions) of white noise images with the spectra of the original images. The generated images can then be used to build the probability distribution function of any statistic of association under the null hypothesis. We demonstrate the validity of a statistical test of association based on these surrogates with both actual and synthetic data and compare it with a corrected parametric test and three existing methods that generate surrogates (randomization, random rotations and shifts, and iterative amplitude adjusted Fourier transform). Type I error control was excellent, even with strong and long-range autocorrelation, which is not the case for alternative methods.

Conclusions/Significance

The wavelet-based surrogates are particularly appropriate in cases where autocorrelation appears at all scales or is direction-dependent (anisotropy). We explore the potential of the method for association tests involving a lattice of binary data and discuss its potential for validation of species distribution models. An implementation of the method in Java for the generation of wavelet-based surrogates is available online as supporting material.  相似文献   

8.
We construct and explore a general modeling framework that allows for a systematic investigation of the impact of changes in landscape structure on population dynamics. The essential parts of the framework are a landscape generator with independent control over landscape composition and physiognomy, an individual-based spatially explicit population model that simulates population dynamics within heterogeneous landscapes, and scale-dependent landscape indices that depict the essential aspects of landscape that interact with dispersal and demographic processes. Landscape maps are represented by a grid of 50x50 cells and consist of good-quality, poor-quality, or uninhabitable matrix habitat cells. The population model was shaped in accordance to the biology of European brown bears (Ursus arctos), and demographic parameters were adjusted to yield a source-sink configuration. Results obtained with the spatially explicit model do not confirm results of earlier nonspatial source-sink models where addition of sink habitat resulted in a decrease of total population size because of dilution of high-quality habitat. Our landscape indices, which describe scale-dependent correlation between and within habitat types, were able to explain variations in variables of population dynamics (mean number of females with sink home ranges, mean number of females with source home ranges, and mean dispersal distance) caused by different landscape structure. When landscape structure changed, changes in these variables generally followed the corresponding change of an appropriate landscape index in a linear way. Our general approach incorporates source-sink dynamics as well as metapopulation dynamics, and the population model can easily be modified for other species groups.  相似文献   

9.
掌握种群动态以及迁徙习性对濒危候鸟的保护至关重要。2004~2005、2007~2008、2008~2009年的冬季(10月~次年4月),采用夜栖地直接计数法对云南省纳帕海湿地黑鹳(Ciconia nigra)的种群数量进行了监测。结果表明,在2004~2005、2007~2008、2008~2009年冬季,纳帕海湿地越冬黑鹳种群平均数量分别为39.6、128.6、181.8只,呈逐年增加的趋势;通常黑鹳10月下旬迁来,至次年3月中下旬迁离;纳帕海同时也是繁殖于蒙古国的黑鹳迁往印度越冬地的重要停歇地,过境时间集中在 11月中上旬。纳帕海湿地已经成为国内最为重要的黑鹳越冬地和迁徙停歇地,建议当地管理部门加强湿地管理,维持适当的浅水区域作为黑鹳的觅食地,另外需加强旅游管理,减少游客对黑鹳的干扰。  相似文献   

10.

Background

Dengue is the most important mosquito-borne viral disease affecting humans. The only prevention measure currently available is the control of its vectors, primarily Aedes aegypti. Recent advances in genetic engineering have opened the possibility for a new range of control strategies based on genetically modified mosquitoes. Assessing the potential efficacy of genetic (and conventional) strategies requires the availability of modeling tools that accurately describe the dynamics and genetics of Ae. aegypti populations.

Methodology/Principal findings

We describe in this paper a new modeling tool of Ae. aegypti population dynamics and genetics named Skeeter Buster. This model operates at the scale of individual water-filled containers for immature stages and individual properties (houses) for adults. The biology of cohorts of mosquitoes is modeled based on the algorithms used in the non-spatial Container Inhabiting Mosquitoes Simulation Model (CIMSiM). Additional features incorporated into Skeeter Buster include stochasticity, spatial structure and detailed population genetics. We observe that the stochastic modeling of individual containers in Skeeter Buster is associated with a strongly reduced temporal variation in stage-specific population densities. We show that heterogeneity in container composition of individual properties has a major impact on spatial heterogeneity in population density between properties. We detail how adult dispersal reduces this spatial heterogeneity. Finally, we present the predicted genetic structure of the population by calculating FST values and isolation by distance patterns, and examine the effects of adult dispersal and container movement between properties.

Conclusions/Significance

We demonstrate that the incorporated stochasticity and level of spatial detail have major impacts on the simulated population dynamics, which could potentially impact predictions in terms of control measures. The capacity to describe population genetics confers the ability to model the outcome of genetic control methods. Skeeter Buster is therefore an important tool to model Ae. aegypti populations and the outcome of vector control measures.  相似文献   

11.
12.
Herbivore grazing is increasingly used as a management tool to prevent the dominance of vegetation by tall grasses or trees. In this report, a model is described that is used to analyze plant-herbivore interactions and their scaling up to landscape scale. The model can be used to predict effects of herbivory on vegetation development. The model is an ecosystem model including modules for carbon and nitrogen cycling through plants, soil organic matter, and atmosphere. Plants compete for light and nitrogen. An herbivory module is included that implements selective foraging by a herbivore in a spatially heterogeneous area. Simulations were done to analyze the effects of herbivore density on vegetation dynamics, to analyze the impact of soil fertility on maximum herbivore density, and to analyze effects of herbivore density on landscapes. Two important points come forward from the model. Maximum herbivore abundance shows a hump-shaped curve along a soil fertility gradient. At higher soil fertility, light competition becomes more important. Herbivory interferes with plant competition, giving the tall, less palatable species a competitive advantage and thereby reducing the food quality and availability and hence the carrying capacity of the area. At a landscape scale, herbivory leads to increased heterogeneity. This increased heterogeneity may increase carrying capacity. The implications of these points for nature management are discussed. Received 13 May 1998; accepted 23 November 1998.  相似文献   

13.
14.

Objective

To study the possibility of Chinese visible human (CVH) head datasets as brain atlas for locating the subthalamic nucleus (STN) before deep brain stimulation (DBS) surgery.

Methods

Optimal head axial and coronal 3.0T, T2-weighted magnetic resonance images (MRI) of 30 patients were obtained. Cross-sectional head images of four CVH head datasets were chosen to establish an average CVH model. All MRI sequences were registered to the CVH model via fiducials in X-, Y-, and Z-direction, respectively, within the same stereotactic space. The correlations between red nucleus (RN) and fiducials, the accuracy of MRI-to-CVH registration, and the coordinate value differences of RN gravity center between MRI and CVH were tested.

Results

The mean gravity center coordinate values and ranges of STN in CVH were measured; The X coordinate value of RN positively correlates with the most anterior point of putamen(PU-A), the lateral edges of putamens (PU-L), and width of the third ventricle, negatively correlated with the patients’ age; The minimal mean errors were when no fiducials were used when locating RN between the MRI and the CVH average model; There were no significant differences of RN in X- and Y-direction between MRI sequences and CVH.

Conclusion

CVH head datasets can be used as brain atlas for Chinese STN localization. Moreover, average coordinate values of the gravity center and the ranges of STN in CVH can be considered as references for locating STN.  相似文献   

15.
16.
Understanding the drivers of spatial patterns of genomic diversity has emerged as a major goal of evolutionary genetics. The flexibility of forward-time simulation makes it especially valuable for these efforts, allowing for the simulation of arbitrarily complex scenarios in a way that mimics how real populations evolve. Here, we present Geonomics, a Python package for performing complex, spatially explicit, landscape genomic simulations with full spatial pedigrees that dramatically reduces user workload yet remains customizable and extensible because it is embedded within a popular, general-purpose language. We show that Geonomics results are consistent with expectations for a variety of validation tests based on classic models in population genetics and then demonstrate its utility and flexibility with a trio of more complex simulation scenarios that feature polygenic selection, selection on multiple traits, simulation on complex landscapes, and nonstationary environmental change. We then discuss runtime, which is primarily sensitive to landscape raster size, memory usage, which is primarily sensitive to maximum population size and recombination rate, and other caveats related to the model’s methods for approximating recombination and movement. Taken together, our tests and demonstrations show that Geonomics provides an efficient and robust platform for population genomic simulations that capture complex spatial and evolutionary dynamics.  相似文献   

17.
Food security and water scarcity have become two major concerns for future human''s sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term) and the 2090s (long term), respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental) but lower on smaller spatial scales (e.g., national and grid cell). Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security.  相似文献   

18.
We present a spatially explicit population model for analysing the expansion of brown bears (Ursus arctos) after the reintroduction program in central Austria. The model is based on field investigations into brown bears in Austria and Slovenia and on current knowledge of brown bears. The landscape of the eastern Alps is represented by a GIS-derived raster map defining local habitat suitability and five major spatial barriers to dispersal. The population model follows the fate of individual bears and simulates reproduction, dispersal, home range establishment, and mortality in annual time steps. We indirectly adjust unknown or uncertain model parameters with 10-year data on the number of females with cubs in central Austria and determine key variables of population dynamics, such as population sizes and growth rates within different population nuclei, dispersal distances, or mortality rates, for model parameterisations that reproduce the data on females with cubs. We estimated a current (1996–2000) growth rate of the population in Austria and adjacent parts of Italy of some 14%; a high proportion of this growth was due toimmigration from Slovenia. Consequently, the growth rate of the subpopulation in central Austria, which probably is isolated functionally (i.e., no exchange of females) from the nuclei along the Austrian–Slovenian border, yielded some 7%. This subpopulation may comprise seven residents, and we estimated for females a 33% risk of extinction during the 1992–2000 period. Validation and confirmation of our model results with data on bear densities that were not used for model construction and parameterisation supported our findings. The high female mortality rates, together with the vulnerability of the small population to chance events (i.e., demographic stochasticity), are the most pressing threat for the population in the eastern Alps. Our approach could be widely applied for analysing dynamics of rare and endangered species in which the paucity of data precludes an appraisal of the state of the population using standard methods.  相似文献   

19.
We developed a fast method to construct local sub-databases from the NCBI-nr database for the quick similarity search and annotation of huge metagenomic datasets based on BLAST-MEGAN approach. A three-step sub-database annotation pipeline (SAP) was further proposed to conduct the annotation in a much more time-efficient way which required far less computational capacity than the direct NCBI-nr database BLAST-MEGAN approach. The 1st BLAST of SAP was conducted using the original metagenomic dataset against the constructed sub-database for a quick screening of candidate target sequences. Then, the candidate target sequences identified in the 1st BLAST were subjected to the 2nd BLAST against the whole NCBI-nr database. The BLAST results were finally annotated using MEGAN to filter out those mistakenly selected sequences in the 1st BLAST to guarantee the accuracy of the results. Based on the tests conducted in this study, SAP achieved a speedup of ∼150–385 times at the BLAST e-value of 1e–5, compared to the direct BLAST against NCBI-nr database. The annotation results of SAP are exactly in agreement with those of the direct NCBI-nr database BLAST-MEGAN approach, which is very time-consuming and computationally intensive. Selecting rigorous thresholds (e.g. e-value of 1e–10) would further accelerate SAP process. The SAP pipeline may also be coupled with novel similarity search tools (e.g. RAPsearch) other than BLAST to achieve even faster annotation of huge metagenomic datasets. Above all, this sub-database construction method and SAP pipeline provides a new time-efficient and convenient annotation similarity search strategy for laboratories without access to high performance computing facilities. SAP also offers a solution to high performance computing facilities for the processing of more similarity search tasks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号