首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
文章介绍了高等植物特有的U-box/ARM蛋白在结构、植物自交不亲和性、抗病性和激素信号转导等方面的研究进展。  相似文献   

2.
泛素化在植物抗病中的作用   总被引:1,自引:0,他引:1  
泛素化作为植物体内一种广泛存在的调控细胞反应的机制,参与调控植物抗病反应。本文综述了泛素化系统在植物抗病反应中的功能及作用机制,重点介绍了CRLs型E3泛素连接酶和RING/U-box型E3泛素连接酶如何参与调控植物抗病信号途径,以及病原物通过效应蛋白和毒性因子调控植物抗病性的分子机理,为阐明植物抗病机理和植物病害防治方法提供参考。  相似文献   

3.
SGT1在植物抗病反应中的功能研究进展   总被引:1,自引:0,他引:1  
SGT1是多种植物抗病基因介导的抗病信号途径的必要组件.SGT1基因的突变或沉默会导致多种植物R基因介导抗病性的丧失.另外,SGT1还参与调控植物的非宿主抗性(non-host resistance).SGT1主要作为分子伴侣或调控泛素化对植物抗病反应进行调控.本文综述了SGT1蛋白结构、SGT1在不同植物抗病反应中的重要性与作用机制,并对SGT1在植物抗病基因工程中的应用潜力进行讨论.  相似文献   

4.
病原相关蛋白及其在植物抗病中的应用   总被引:6,自引:0,他引:6  
  相似文献   

5.
植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展   总被引:1,自引:0,他引:1  
植物果聚糖是一类重要的碳水化合物和渗透调节物质,可以提高植物的抗逆性。目前对植物果聚糖代谢酶基因的研究较多,主要包括相关基因的克隆、表达和利用基因工程技术将果聚糖相关代谢基因转入植物中。该文主要介绍了果聚糖的分布、种类、代谢途径及相关基因的克隆和表达,重点阐述了果聚糖在植物抗逆中的作用及其分子生物学研究进展。  相似文献   

6.
不饱和脂肪酸及其衍生物在植物抗逆反应中发挥着重要的生理功能,该文概述了这类物质生物功能的最新研究进展,并对不饱和脂肪酸及其衍生物的研究方向作了简单论述.  相似文献   

7.
植物果聚糖是一类重要的碳水化合物和渗透调节物质,可以提高植物的抗逆性。目前对植物果聚糖代谢酶基因的研究较多,主要包括相关基因的克隆、表达和利用基因工程技术将果聚糖相关代谢基因转入植物中。该文主要介绍了果聚糖的分布、种类、代谢途径及相关基因的克隆和表达,重点阐述了果聚糖在植物抗逆中的作用及其分子生物学研究进展。  相似文献   

8.
植物抗病反应的信号传导网络   总被引:4,自引:0,他引:4  
植物由抗病基因介导的防卫过程存在一系列生理生化和分子生物学反应,这些反应从病原菌侵染点开始的超敏反应(HR)并延伸到远处组织的系统抗性或获得性抗性(SAR),受制于一种信号传导网络的调控,这个信号系统由抗病蛋白和病原菌非毒性蛋白在一种配体-受体的互作模式下激发,并由信号分子H2O2,NO和系统信号分子SA,JA和乙烯和通过关键调控基因传递和放大,最终诱导一系列防卫反应基因的表达和代谢的变化而产生抗性。植物防卫信号的产生有类似于动物免疫系统因子的介导,并可由非寄主病原菌或诱导子诱发,这些信号途径所产生的广谱抗性为植物抗病基因工程的应用奠定了基础。  相似文献   

9.
《生命科学研究》2015,(4):362-367
在真核生物中,由泛素介导的蛋白降解途径与植物生长发育密切相关。F-box蛋白家族是一类含有Fbox基序(motif),在泛素介导的蛋白质水解过程中具有底物识别特性的蛋白质家族。目前,从各种植物中已鉴定出大量的F-box蛋白质,这类蛋白质在植物激素的信号转导、光信号转导、自交不亲和以及花器官发育等许多生理过程中都具有重要功能。研究发现F-box蛋白在调控植物生长发育过程中所发挥的功能与其结构及泛素蛋白酶体途径密切相关。  相似文献   

10.
水杨酸在植物抗病中的作用   总被引:30,自引:0,他引:30  
水杨酸是一种重要的能激活植物抗病防卫反应的内源信号分子,本文首先介绍了水杨酸的基本性质及水杨酸在植物抗病中的作用,然后从水杨酸与水杨酸结合蛋白的相互作用以及水杨酸介导的信号传导途径与非水杨酸介导的信号途径等方面初步探讨了水杨酸诱导植物抗病性的作用机制,最后总结了研究水杨酸作用机制对植物抗性生理和抗性分子生物学发展的意义。  相似文献   

11.
谷胱甘肽在植物抗逆中的作用   总被引:3,自引:0,他引:3  
麦维军  王颖  梁承邺  张明永   《广西植物》2005,25(6):570-575
在简要总结谷胱甘肽(GSH)的结构、分布、代谢和调控的基础上,概述了GSH在植物抗逆性方面的 作用,认为GSH通过植物体内螯合肽合成酶催化下聚合形成植物螯合肽来抵抗重金属的胁迫,作为抗氧化剂 参与低温伤害的保护,以亲核进攻一结合反应方式进行生物解毒等。讨论了GSH在植物抗逆性功能中的机 制,并就GSH今后在该方面的研究前景进行了展望。  相似文献   

12.
植物抗病反应的信号传导网络   总被引:7,自引:0,他引:7  
植物由抗病基因介导的防卫过程存在一系列生理生化和分子生物学反应,这些反应从病原菌侵染点开始的超敏反应(HR)并延伸到远处组织的系统抗性或获得性抗性(SAR),受制于一种信号传导网络的调控。这个信号系统由抗病蛋白和病原菌非毒性蛋白在一种配体-受体的互作模式下激发,并由信号分子H2O2,NO和系统信号分子SA,JA和乙烯和通过关键调控基因传递和放大,最终诱导一系列防卫反应基因的表达和代谢的变化而产生抗性。植物防卫信号的产生有类似于动物免疫系统因子的介导,并可由非寄主病原菌或诱导子诱发。这些信号途径所产生的广谱抗性为植物抗病基因工程的应用奠定了基础。  相似文献   

13.
SGTl是多种植物抗病基因介导的抗病信号途径的必要组件。SGTl基因的突变或沉默会导致多种植物R基因介导抗病性的丧失。另外,SGTl还参与调控植物的非宿主抗性(non-host resistance)。SGTl主要作为分子伴侣或调控泛素化对植物抗病反应进行调控。本文综述了SGTl蛋白结构、SGTl在不同植物抗病反应中的重要性与作用机制,并对SGTl在植物抗病基因工程中的应用潜力进行讨论。  相似文献   

14.
水杨酸在植物抗病中的作用   总被引:1,自引:0,他引:1  
水杨酸是一种重要的能激活植物抗病防卫反应的内源信号分子。本文首先介绍了水杨酸的基本性质及水杨酸在植物抗病中的作用,然后从水杨酸与水杨酸结合蛋白的相互作用以及水杨酸介导的信号传导途径与非水杨酸介导的信号途径等方面初步探讨了水杨酸诱导植物抗病性的作用机制,最后总结了研究水杨酸作用机制对植物抗性生理和抗性分子生物学发展的意义。  相似文献   

15.
植物抗病蛋白研究进展   总被引:1,自引:1,他引:0  
闫佳  刘雅琼  侯岁稳 《植物学报》2018,53(2):250-263
为了应对外界复杂的环境变化, 植物进化出一套复杂而精细的免疫应答调控机制。植物抗病蛋白能够特异地识别病原微生物分泌的效应蛋白, 触发免疫响应以对抗病原微生物的侵扰。该文综述了植物抗病蛋白的结构与功能及对病原菌的识别方式、在免疫响应过程中抗病蛋白的动态平衡机制及其介导的防御反应信号转导。开展植物抗病蛋白研究可为定向培育抗病作物奠定理论基础。  相似文献   

16.
蛋白亚硝基化(S-nitrosylation)是一种在一氧化氮作用下与蛋白半胱氨酸巯基共价结合,使巯基-SH转化为-SNO的反应。作为一种氧化还原依赖的翻译后调控形式,蛋白亚硝基化对多种蛋白的功能具有调节作用,越来越多的证据表明蛋白亚硝基化在植物抗病中发挥重要的作用。简要介绍了蛋白巯基亚硝基化的特点、检测方法、功能研究以及在植物抗病调节方面的最新进展。  相似文献   

17.
BTB (broad-complex, tramtrack, and bric-à-brac)结构域是在真核生物中发现的高度保守的蛋白质相互作用基序。含有BTB结构域的一类蛋白统称为BTB蛋白,它们广泛参与转录调控、蛋白质降解等过程。越来越多的研究表明,该基因在植物生长发育、生物与非生物胁迫等生理过程中具有重要的作用。本文以蛋白结构域为基础,系统总结了该基因家族蛋白在泛素化介导植物发育和逆境应答等过程中的研究进展,为植物中该类基因的研究提供了参考。  相似文献   

18.
冷激蛋白是存在于细菌、植物与动物中的一类高度保守的核酸结合蛋白,其通过RNA分子伴侣活性参与转录、翻译及生长发育和逆境胁迫应答等细胞生理活动。本文主要从植物冷激蛋白的结构、表达模式、生物学功能以及应用前景等几个方面介绍了植物冷激蛋白的研究进展。  相似文献   

19.
BTB(Broad-complex, Tramtrack, and Bric-a-brac)蛋白家族存在于痘病毒以及几乎所有真核生物中,该类蛋白为多结构域蛋白,最为显著的特征是含有高度保守且能介导蛋白与蛋白间相互作用的BTB结构域。BTB蛋白具有多种功能,其功能特异性取决于BTB蛋白中其他结构域以及它的互作蛋白。BTB蛋白广泛参与转录调节,染色质重组装,细胞骨架调控和泛素化降解等过程,与胚胎发育,器官形成,信号转导以及免疫调节等生理过程密切相关。除此之外,多种疾病如癌症,神经系统和骨骼肌系统疾病等的病理过程也与BTB蛋白相关。本文以蛋白结构为基础总结了该家族的共性规律并重点论述了BTB蛋白在转录调节以及泛素化降解过程中发挥的重要作用,以期为后续研究提供重要参考。  相似文献   

20.
随着分子生物学技术的飞速发展,通过基因工程方法可以更快更好地获得农作物抗逆新品种,其首要任务是通过分离相应的表型改变的突变体来鉴定、克隆在胁迫条件下表达模式发生改变的基因。主要介绍几种常用的及最新的突变体诱变和筛选技术,并分析每种技术的优缺点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号