首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative contributions of climate versus interspecific interactions in shaping species distributions have important implications for closely related species at contact zones. When hybridization occurs within a contact zone, these factors regulate hybrid zone location and movement. While a hybrid zone''s position may depend on both climate and interactions between the hybridizing species, little is known about how these factors interact to affect hybrid zone dynamics. Here, we utilize SDM (species distribution modeling) both to characterize the factors affecting the current location of a moving North American avian hybrid zone and to predict potential direct and indirect effects of climate change on future distributions. We focus on two passerine species that hybridize where their ranges meet, the Black‐capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadee. Our contemporary climate models predict the occurrence of climatically suitable habitat extending beyond the hybrid zone for P. atricapillus only, suggesting that interspecific interactions primarily regulate this range boundary in P. atricapillus, while climatic factors regulate P. carolinensis. Year 2050 climate models predict a drastic northward shift in suitable habitat for P. carolinensis. Because of the greater importance of interspecific interactions for regulating the southern range limit of P. atricapillus, these climate‐mediated shifts in the distribution of P. carolinensis may indirectly lead to a range retraction in P. atricapillus. Together, our results highlight the ways climate change can both directly and indirectly affect species distributions and hybrid zone location. In addition, our study lends support to the longstanding hypothesis that abiotic factors regulate species'' poleward range limits, while biotic factors shape equatorial range limits.  相似文献   

2.
Microplot and field experiments were conducted to determine relationships of population densities of Meloidogyne spp. to performance of flue-cured tobacco. A 3-yr microplot study of these interactions involved varying initial nematode numbers (Pi).and use of ethoprop to re-establish ranges of nematode densities. Field experiments included various nematicides at different locations. Regression analyses of microplot data from a loamy sand showed that cured-leaf yield losses on ''Coker 319'' for each 10-fold increase in Pi were as follows: M. javanica and M. arenaria—-13-19%; M. incognita—5-10%; M. hapla—3.4-5%; and 3% for M. incognita on resistant ''Speight G-28'' tobacco. A Pi of 750 eggs and larvae/500 cm³ of soil of all species except M. hapla caused a significant yield loss; only large numbers of M. hapla effected a loss. M. arenaria was the most tolerant species to ethoprop. Root-gall indices for microplot and most field-nematicide tests also were correlated negatively with yield. Relationships of Pi(s) and necrosis indices to yield were best characterized by linear regression models, whereas midseason numbers of eggs plus larvae (Pm) and sometimes gall indices vs. yield were better characterized by quadratic models. The relation of field Pm and yield was also adequately described by the Seinhorst model. Degrees of root galling, root necrosis, yield losses, and basic rates of reproduction on tobacco generally increased from M. hapla to M. incognita to M. arenaria to M. javanica.  相似文献   

3.
Identifying the environmental drivers of the global distribution of succulent plants using the Crassulacean acid metabolism pathway of photosynthesis has previously been investigated through ensemble‐modeling of species delimiting the realized niche of the natural succulent biome. An alternative approach, which may provide further insight into the fundamental niche of succulent plants in the absence of dispersal limitation, is to model the distribution of selected species that are globally widespread and have become naturalized far beyond their native habitats. This could be of interest, for example, in defining areas that may be suitable for cultivation of alternative crops resilient to future climate change. We therefore explored the performance of climate‐only species distribution models (SDMs) in predicting the drivers and distribution of two widespread CAM plants, Opuntia ficusindica and Euphorbia tirucalli. Using two different algorithms and five predictor sets, we created distribution models for these exemplar species and produced an updated map of global inter‐annual rainfall predictability. No single predictor set produced markedly more accurate models, with the basic bioclim‐only predictor set marginally out‐performing combinations with additional predictors. Minimum temperature of the coldest month was the single most important variable in determining spatial distribution, but additional predictors such as precipitation and inter‐annual precipitation variability were also important in explaining the differences in spatial predictions between SDMs. When compared against previous projections, an a posteriori approach correctly does not predict distributions in areas of ecophysiological tolerance yet known absence (e.g., due to biotic competition). An updated map of inter‐annual rainfall predictability has successfully identified regions known to be depauperate in succulent plants. High model performance metrics suggest that the majority of potentially suitable regions for these species are predicted by these models with a limited number of climate predictors, and there is no benefit in expanding model complexity and increasing the potential for overfitting.  相似文献   

4.
植物物候反映了过去一段时间气候条件的累积对植物生长和发育的综合影响.通过收集1974-2007年民勤荒漠区典型草本植物马蔺的物候观测数据以及民勤治沙综合试验站同步观测的气象资料,分析了马蔺的物候特征及其对不同时间尺度气候变化的响应过程,结果表明:(1)马蔺的平均生长季长度约为201.7 d,并呈现出逐年增加的趋势,大致表现为每10a延长0.8d,但随着年份的变化并不显著(P>0.1).(2)除开花期的开始时间出现明显的延后外(P<0.1),马蔺其它物候期的开始和结束时间均表现为轻微的延后趋势,且随着年份的变化不显著(P>0.1).马蔺各个物候期的持续时间不同年份差异较大,其中萌动期、开花期和果熟期的持续时间随着年份出现减少的趋势,而展叶期和黄枯期的持续时间随着年份则出现增加的趋势,但其变化均不显著(P>0.1).(3)马蔺整个生长季的延长可能受气温和降水的综合作用,其物候期的开始时间对物候期开始之前3周到3个月之间的积温有着显著的响应(P<0.01),而对于长时间尺度的积温则响应不显著(P>0.1);其部分物候期的开始时间对于中短时间尺度的累积降雨有着较显著的响应(P<0.1),但是对于长时间尺度的累积降雨则所有物候期都响应较弱(P>0.1).(4)马蔺的物候期特征除了受区域气候变化影响之外,可能还与其自身的水分利用机制有关,未来的气候变化可能会进一步影响到该地区典型荒漠草本植物的物候特征.  相似文献   

5.
Background and Aims Although hybridization can play a positive role in plant evolution, it has been shown that excessive unidirectional hybridization can result in replacement of a species’ gene pool, and even the extinction of rare species via genetic assimilation. This study examines levels of introgression between the common Saxifraga spathularis and its rarer congener S. hirsuta, which have been observed to hybridize in the wild where they occur sympatrically.Methods Seven species-specific single nucleotide polymorphisms (SNPs) were analysed in 1025 plants representing both species and their hybrid, S. × polita, from 29 sites across their ranges in Ireland. In addition, species distribution modelling was carried out to determine whether the relative abundance of the two parental species is likely to change under future climate scenarios.Key Results Saxifraga spathularis individuals tended to be genetically pure, exhibiting little or no introgression from S. hirsuta, but significant levels of introgression of S. spathularis alleles into S. hirsuta were observed, indicating that populations exhibiting S. hirsuta morphology are more like a hybrid swarm, consisting of backcrosses and F2s. Populations of the hybrid, S. × polita, were generally comprised of F1s or F2s, with some evidence of backcrossing. Species distribution modelling under projected future climate scenarios indicated an increase in suitable habitats for both parental species.Conclusions Levels of introgression observed in this study in both S. spathularis and S. hirsuta would appear to be correlated with the relative abundance of the species. Significant introgression of S. spathularis alleles was detected in the majority of the S. hirsuta populations analysed and, consequently, ongoing introgression would appear to represent a threat to the genetic integrity of S. hirsuta, particularly in areas where the species exists sympatrically with its congener and where it is greatly outnumbered.  相似文献   

6.
Nitrogen (N) serves as an important mineral element affecting plant productivity and nutritional quality. However, few studies have addressed the interactive effects of elevated CO2 and precipitation change on leaf N of dominant grassland genera such as Stipa L. This has restricted our understanding of the responses of grassland to climate change. We simulated the interactive effects of elevated CO2 concentration and varied precipitation on leaf N concentration (Nmass) of four Stipa species (Stipa baicalensis, Stipa bungeana, Stipa grandis, and Stipa breviflora; the most dominant species in arid and semiarid grassland) using open-top chambers (OTCs). The relationship between the Nmass of these four Stipa species and precipitation well fits a logarithmic function. The sensitivity of these four species to precipitation change was ranked as follows: S. bungeana S. breviflora > S. baicalensis S. grandis. The Nmass of S. bungeana was the most sensitive to precipitation change, while S. grandis was the least sensitive among these Stipa species. Elevated CO2 exacerbated the effect of precipitation on Nmass. Nmass decreased under elevated CO2 due to growth dilution and a direct negative effect on N assimilation. Elevated CO2 reduced Nmass only in a certain precipitation range for S. baicalensis (163–343 mm), S. bungeana (164–355 mm), S. grandis (148–286 mm), and S. breviflora (130–316 mm); severe drought or excessive rainfall would be expected to result in a reduced impact of elevated CO2. Elevated CO2 affected the Nmass of S. grandis only in a narrow precipitation range. The effect of elevated CO2 reached a maximum when the amount of precipitation was 253, 260, 217, and 222 mm for S. baicalensis, S. bungeana, S. grandis, and S. breviflora, respectively. The Nmass of S. grandis was the least sensitive to elevated CO2. The Nmass of S. breviflora was more sensitive to elevated CO2 under a drought condition compared with the other Stipa species.  相似文献   

7.
The amount of energy consumed within an average city block is an order of magnitude higher than that consumed in any other ecosystem over a similar area. This is driven by human food inputs, but the consequence of these resources for urban animal populations is poorly understood. We investigated the role of human foods in ant diets across an urbanization gradient in Manhattan using carbon and nitrogen stable isotopes. We found that some—but not all—ant species living in Manhattan''s most urbanized habitats had δ13C signatures associated with processed human foods. In particular, pavement ants (Tetramorium sp. E) had increased levels of δ13C similar to δ13C levels in human fast foods. The magnitude of this effect was positively correlated with urbanization. By contrast, we detected no differences in δ15N, suggesting Tetramorium feeds at the same trophic level despite shifting to human foods. This pattern persisted across the broader ant community; species in traffic islands used human resources more than park species. Our results demonstrate that the degree urban ants exploit human resources changes across the city and among species, and this variation could play a key role in community structure and ecosystem processes where human and animal food webs intersect.  相似文献   

8.
9.
Understanding changes in plant diversity is important with changing climate in desert ecosystems. We analyzed the changes in species richness and plant functional types in different landscape positions and species turnover between five sub-regions of the Gurbantünggüt Desert, China, from 2009 to 2013. We also analyzed how species density, richness, and plant functional types responded to annual precipitation, mean annual temperature, and the coefficient of variation (C v) of both daily precipitation and monthly temperature, throughout this entire desert region. The results showed significant differences in the Shannon–Weiner, Evenness, and Gleason indices between the sub-regions over the 5-year study period. Species richness varied in the order of ephemeral plants > long-lived annual plants > perennial herbs > shrubs. Species richness in the lower and inter-dune area was higher than on the upper dune and on top of dunes. About 34.8 % of total species were influenced by climate change. The density of about 8.7 % of total species declined with increasing precipitation, especially the two dominant species, Haloxylon persicum and Haloxylon ammodendron. Plant richness increased significantly with increased precipitation. Ephemeral plant made the largest contribution to increasing plant diversity in the desert, while shrubs made the smallest. Ephemeral plants play an important role in maintaining plant community composition and function. In addition, species turnover declined with increasing precipitation. We suggest that differences in flora and different landscape positions in the dunes, specifically in shaping the heterogeneous microhabitats, are important reasons for the complex responses of species to climate change.  相似文献   

10.
Hotter and drier conditions projected for the southwestern United States can have a large impact on the abundance and composition of long‐lived desert plant species. We used long‐term vegetation monitoring results from 39 large plots across four protected sites in the Sonoran Desert region to determine how plant species have responded to past climate variability. This cross‐site analysis identified the plant species and functional types susceptible to climate change, the magnitude of their responses, and potential climate thresholds. In the relatively mesic mesquite savanna communities, perennial grasses declined with a decrease in annual precipitation, cacti increased, and there was a reversal of the Prosopis velutina expansion experienced in the 20th century in response to increasing mean annual temperature (MAT). In the more xeric Arizona Upland communities, the dominant leguminous tree, Cercidium microphyllum, declined on hillslopes, and the shrub Fouquieria splendens decreased, especially on south‐ and west‐facing slopes in response to increasing MAT. In the most xeric shrublands, the codominant species Larrea tridentata and its hemiparasite Krameria grayi decreased with a decrease in cool season precipitation and increased aridity, respectively. This regional‐scale assessment of plant species response to recent climate variability is critical for forecasting future shifts in plant community composition, structure, and productivity.  相似文献   

11.
The impact of 10 years of annual foot trampling on soil biocrusts was examined in replicated field experiments at three cold desert sites of the Colorado Plateau, USA. Trampling detrimentally impacted lichens and mosses, and the keystone cyanobacterium, Microcoleus vaginatus, resulting in increased soil erosion and reduced C and N concentrations in surface soils. Trampled biocrusts contained approximately half as much extractable DNA and 20–52% less chlorophyll a when compared with intact biocrusts at each site. Two of the three sites also showed a decline in scytonemin-containing, diazotrophic cyanobacteria in trampled biocrusts. 16S rRNA gene sequence and terminal restriction fragment length polymorphism (T-RFLP) analyses of soil bacteria from untrampled and trampled biocrusts demonstrated a reduced proportion (23–65% reduction) of M. vaginatus and other Cyanobacteria in trampled plots. In parallel, other soil bacterial species that are natural residents of biocrusts, specifically members of the Actinobacteria, Chloroflexi and Bacteroidetes, became more readily detected in trampled than in untrampled biocrusts. Replicate 16S rRNA T-RFLP profiles from trampled biocrusts at all three sites contained significantly more fragments (n=17) than those of untrampled biocrusts (n⩽6) and exhibited much higher variability among field replicates, indicating transition to an unstable disturbed state. Despite the dramatic negative impacts of trampling on biocrust physical structure and composition, M. vaginatus could still be detected in surface soils after 10 years of annual trampling, suggesting the potential for biocrust re-formation over time. Physical damage of biocrusts, in concert with changing temperature and precipitation patterns, has potential to alter performance of dryland ecosystems for decades.  相似文献   

12.
Island biogeographic studies traditionally treat single islands as units of analysis. This ignores the fact that most islands are spatially nested within archipelagos. Here, we took a fundamentally different approach and focused on entire archipelagos using species richness of vascular plants on 23 archipelagos worldwide and their 174 constituent islands. We assessed differential effects of biogeographic factors (area, isolation, age, elevation), current and past climate (temperature, precipitation, seasonality, climate change velocity) and intra-archipelagic spatial structure (archipelago area, number of islands, area range, connectivity, environmental volume, inter-island distance) on plant diversity. Species diversity of each archipelago (γ) was additively partitioned into α, β, nestedness and replacement β-components to investigate the relative importance of environmental and spatial drivers. Multiple regressions revealed strong effects of biogeography and climate on α and γ, whereas spatial factors, particularly number of islands, inter-island distance and area range, were key to explain β. Structural equation models additionally suggested that γ is predominantly determined by indirect abiotic effects via its components, particularly β. This highlights that β and the spatial arrangement of islands are essential to understand insular ecology and evolution. Our methodological framework can be applied more widely to other taxa and archipelago-like systems, allowing new insights into biodiversity origin and maintenance.  相似文献   

13.
不同干扰下阿拉善荒漠啮齿动物优势种对气候变化的响应   总被引:1,自引:0,他引:1  
气候变化已对物种分布范围和丰富度产生了极大的影响。荒漠生态系统对气候变化的反应可能更加敏感。作为荒漠生态系统的重要组成者,了解荒漠啮齿动物特别是优势鼠种将对气候变化如何响应,对于荒漠地区生物多样性的维持将具有重要意义。2002—2010年,采用标志重捕法对阿拉善荒漠4种不同生境下啮齿动物优势种群进行了研究,分别利用Spearman相关分析以及典范对应分析(Canonical Correspondence analysis,CCA)对啮齿动物优势种群动态与年平均温度和年降水量的相关性进行了分析。结果表明,不同啮齿动物优势种对温度和降雨的响应不同,尤其以子午沙鼠表现最为显著。跳鼠对温度的适宜性要高于仓鼠科的子午沙鼠和黑线仓鼠,而仓鼠科啮齿动物对降雨的适宜性高于跳鼠。较小尺度上的人为干扰更可能从改变食性和生境的途径上加剧或缓冲降雨对荒漠啮齿动物优势种的影响,而不是改变温度对啮齿动物的作用。  相似文献   

14.

Background and Aims

Formation of seed banks and dormancy cycling are well known in annual species, but not in woody species. In this study it was hypothesized that the long-lived halophytic cold desert shrub Kalidium gracile has a seed bank and dormancy cycling, which help restrict germination to a favourable time for seedling survival.

Methods

Fresh seeds were buried in November 2009 and exhumed and tested for germination monthly from May 2010 to December 2011 over a range of temperatures and salinities. Germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were investigated in the field.

Key Results

Seeds of K. gracile had a soil seed bank of 7030 seeds m−2 at the beginning of the growing season. About 72 % of the seeds were depleted from the soil seed bank during a growing season, and only 1·4 % of them gave rise to seedlings that germinated early enough to reach a stage of growth at which they could survive to overwinter. About 28 % of the seeds became part of a persistent soil seed bank. Buried seeds exhibited an annual non-dormancy/conditional dormancy (ND/CD) cycle, and germination varied in sensitivity to salinity during the cycle. Dormancy cycling is coordinated with seasonal environmental conditions in such a way that the seeds germinate in summer, when there is sufficient precipitation for seedling establishment.

Conclusions

Kalidium gracile has three life history traits that help ensure persistence at a site: a polycarpic perennial life cycle, a persistent seed bank and dormancy cycling. The annual ND/CD cycle in seeds of K. gracile contributes to seedling establishment of this species in the unpredictable desert environment and to maintenance of a persistent soil seed bank. This is the first report of a seed dormancy cycle in a cold desert shrub.  相似文献   

15.
This study of Astragalus holmgreniorum examines its adaptations to the warm desert environment and whether these adaptations will enable it to persist. Its spring ephemeral hemicryptophyte life‐history strategy is unusual in warm deserts. We used data from a 22‐year demographic study supplemented with reproductive output, seed bank, and germinant survival studies to examine the population dynamics of this species using discrete‐time stochastic matrix modeling. The model showed that A. holmgreniorum is likely to persist in the warm desert in spite of high dormant‐season mortality. It relies on a stochastically varying environment with high inter‐annual variation in precipitation for persistence, but without a long‐lived seed bank, environmental stochasticity confers no advantage. Episodic high reproductive output and frequent seedling recruitment along with a persistent seed bank are adaptations that facilitate its survival. These adaptations place its life‐history strategy further along the spectrum from “slower” to “faster” relative to other perennial spring ephemerals. The extinction risk for small populations is relatively high even though mean λ s > 1 because of the high variance in year quality. This risk is also strongly dependent on seed bank starting values, creating a moving window of extinction risk that varies with population size through time. Astragalus holmgreniorum life‐history strategy combines the perennial spring ephemeral life form with features more characteristic of desert annuals. These adaptations permit persistence in the warm desert environment. A promising conclusion is that new populations of this endangered species can likely be established through direct seeding.  相似文献   

16.
17.
Tomato Yellow Leaf Curl China virus spreads together with its invasive vector, the silverleaf whitefly B biotype, which exhibits higher growth rates on infected plants. Previous studies indicate that the virus satellite gene βC1 accounts for the visible symptoms of infection and inhibits the constitutive expression of jasmonic acid (JA)—a phytohormone involved in plant defense against whiteflies—and of some JA-regulated genes. Here we present new details of the effects of on plant signaling and defense, obtained with (non-host) transgenic Arabidopsis thaliana and Nicotiana benthamiana plants. We found that JA induction in response to wounding was reduced in plants expressing βC1. This result implies that βC1 acts on conserved plant regulation mechanisms and might impair the entire JA defense pathway. Furthermore, transformed N. benthamiana plants exhibited elevated emissions of the volatile compound linalool, suggesting that βC1 also influences plant-derived olfactory cues available to vector and non-vector insects.  相似文献   

18.

Background and Aims

Elucidation of the mechanisms by which plants adapt to elevated CO2 is needed; however, most studies of the mechanisms investigated the response of plants adapted to current atmospheric CO2. The rapid respiration rate of cotton (Gossypium hirsutum) fruits (bolls) produces a concentrated CO2 microenvironment around the bolls and bracts. It has been observed that the intercellular CO2 concentration of a whole fruit (bract and boll) ranges from 500 to 1300 µmol mol−1 depending on the irradiance, even in ambient air. Arguably, this CO2 microenvironment has existed for at least 1·1 million years since the appearance of tetraploid cotton. Therefore, it was hypothesized that the mechanisms by which cotton bracts have adapted to elevated CO2 will indicate how plants will adapt to future increased atmospheric CO2 concentration. Specifically, it is hypothesized that with elevated CO2 the capacity to regenerate ribulose-1,5-bisphosphate (RuBP) will increase relative to RuBP carboxylation.

Methods

To test this hypothesis, the morphological and physiological traits of bracts and leaves of cotton were measured, including stomatal density, gas exchange and protein contents.

Key results

Compared with leaves, bracts showed significantly lower stomatal conductance which resulted in a significantly higher water use efficiency. Both gas exchange and protein content showed a significantly greater RuBP regeneration/RuBP carboxylation capacity ratio (Jmax/Vcmax) in bracts than in leaves.

Conclusions

These results agree with the theoretical prediction that adaptation of photosynthesis to elevated CO2 requires increased RuBP regeneration. Cotton bracts are readily available material for studying adaption to elevated CO2.  相似文献   

19.
The relationships between densities of all members of a plant-parasitic nematode community and yield of ''Davis'' soybean and between final and preplant population levels were examined in small plots on sandy soils in north-central Florida. Plant-parasitic nematodes present in the community included Belonolaimus longicaudatus, Criconemella sphaerocephala, Meloidogyne incognita, Paratrichodorus minor, Pratylenchus brachyurus, and Xiphinema sp. Plant growth, including stand count, soybean yield (kg/ha), and size of young plants, was occasionally inversely correlated (P ≤ 0.05) with densities of B. longicaudatus or P. brachyurus, but not with densities of other species or with a range of soil variables. The nature of this relationship varied with season, with more severe stand losses noted during 1987 than in 1988. Final population densities (Pf) of most nematode species showed significant (P ≤ 0.05) linear relationships to densities measured at planting or earlier (Pi). These relationships were stronger (higher r²) with the ectoparasite B. longicaudatus than with the endoparasites M. incognita and P. brachyurus. Criconemella sphaerocephala declined under soybean cultivation, reaching levels near zero after two seasons. A quadratic model showed an improvement (P ≤ 0.05) over the linear model in describing the relationship between Pf and Pi measured at planting for B. longicaudatus, and gave a better indication of the leveling off of Pf at high values of Pi.  相似文献   

20.
Understanding the history of forests and their species'' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation—coastal or swamp vs terra firme—in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号