首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previous studies have shown that the JAK2/STAT3 signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, we explored the role of the JAK2/STAT3 signaling pathway in hydrogen peroxide (H2O2)-induced OSI and the protective effect of melatonin against (H2O2)-induced injury in human umbilical vein endothelial cells (HUVECs). AG490 (a specific inhibitor of the JAK2/STAT3 signaling pathway) and JAK2 siRNA were used to manipulate JAK2/STAT3 activity, and the results showed that AG490 and JAK2 siRNA inhibited OSI and the levels of p-JAK2 and p-STAT3. HUVECs were then subjected to H2O2 in the absence or presence of melatonin, the main secretory product of the pineal gland. Melatonin conferred a protective effect against H2O2, which was evidenced by improvements in cell viability, adhesive ability and migratory ability, decreases in the apoptotic index and reactive oxygen species (ROS) production and several biochemical parameters in HUVECs. Immunofluorescence and Western blotting showed that H2O2 treatment increased the levels of p-JAK2, p-STAT3, Cytochrome c, Bax and Caspase3 and decreased the levels of Bcl2, whereas melatonin treatment partially reversed these effects. We, for the first time, demonstrate that the inhibition of the JAK2/STAT3 signaling pathway results in a protective effect against endothelial OSI. The protective effects of melatonin against OSI, at least partially, depend upon JAK2/STAT3 inhibition.  相似文献   

3.
4.
5.
Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable cation channel involved in physiological and pathophysiological processes linked to oxidative stress. TRPM2 channels are co-activated by intracellular Ca2+ and ADP-ribose (ADPR) but also modulated in intact cells by several additional factors. Superfusion of TRPM2-expressing cells with H2O2 or intracellular dialysis of cyclic ADPR (cADPR) or nicotinic acid adenine dinucleotide phosphate (NAADP) activates, whereas dialysis of AMP inhibits, TRPM2 whole-cell currents. Additionally, H2O2, cADPR, and NAADP enhance ADPR sensitivity of TRPM2 currents in intact cells. Because in whole-cell recordings the entire cellular machinery for nucleotide and Ca2+ homeostasis is intact, modulators might affect TRPM2 activity either directly, by binding to TRPM2, or indirectly, by altering the local concentrations of the primary ligands ADPR and Ca2+. To identify direct modulators of TRPM2, we have studied the effects of H2O2, AMP, cADPR, NAADP, and nicotinic acid adenine dinucleotide in inside-out patches from Xenopus oocytes expressing human TRPM2, by directly exposing the cytosolic faces of the patches to these compounds. H2O2 (1 mm) and enzymatically purified cADPR (10 μm) failed to activate, whereas AMP (200 μm) failed to inhibit TRPM2 currents. NAADP was a partial agonist (maximal efficacy, ∼50%), and nicotinic acid adenine dinucleotide was a full agonist, but both had very low affinities (K0.5 = 104 and 35 μm). H2O2, cADPR, and NAADP did not enhance activation by ADPR. Considering intracellular concentrations of these compounds, none of them are likely to directly affect the TRPM2 channel protein in a physiological context.  相似文献   

6.
The aim of this study was to investigate the role of JAK-STAT pathway in the cytoprotection afforded by preconditioning with H2O2. It was shown that (1) Preconditioning with 100 μmol/L H2O2 can markedly protect PC12 cells against apoptosis and cytotoxicity induced by 300 μmol/L H2O2; (2) The expression and tyrosine phosphorylation of JAK2, not JAK1 were rapidly increased at 5 min after H2O2 preconditioning; (3) The expression of STAT1 and STAT3 were significantly increased at 15 min after H2O2 preconditioning, and the pTyr-STAT1 and pTyr-STAT3 were markedly increased at 60 min after H2O2 preconditioning; (4) Pretreatment with the JAK inhibitor AG-490 (10 μmol/L) 20 min before H2O2 preconditioning blocked not only the activation of JAK2, STAT1 and STAT3, but also the cytoprotection of H2O2 preconditioning against apoptosis and cytotoxicity induced by oxidative stress. These findings suggested that preconditioning with H2O2 activated the JAK-STAT pathway that played an important role in the cytoprotection induced by H2O2 preconditioning.  相似文献   

7.
8.
9.
10.
11.
The activity of erythrocyte cytosolic superoxide dismutase from rat, bovine, man and duck was considerably increased when measured after preparation or incubation in media pretreated with negative air ions (mostly superoxide) from electroeffluvial ion generator. 0.5–1.0 μM H2O2 was found in incubation medium after treatment with air ions. The stimulatory effect of air ions on superoxide dismutase activity was mimicked by addition of 0.5–6 μM H2O2. The primary physicochemical mechanism of beneficial biological action of negative air ions is suggested to be related to the stimulation of superoxide dismutase activity by micromolar concentrations of H2O2.  相似文献   

12.
13.
Spraying mustard (Sinapis alba L.) seedlings with salicylic acid (SA) solutions between 10 and 500 μm significantly improved their tolerance to a subsequent heat shock at 55°C for 1.5 h. The effects of SA were concentration dependent, with higher concentrations failing to induce thermotolerance. The time course of thermotolerance induced by 100 μm SA was similar to that obtained with seedlings acclimated at 45°C for 1 h. We examined the hypothesis that induced thermotolerance involved H2O2. Heat shock at 55°C caused a significant increase in endogenous H2O2 and reduced catalase activity. A peak in H2O2 content was observed within 5 min of either SA treatment or transfer to the 45°C acclimation temperature. Between 2 and 3 h after SA treatment or heat acclimation, both H2O2 and catalase activity significantly decreased below control levels. The lowered H2O2 content and catalase activity occurred in the period of maximum thermoprotection. It is suggested that thermoprotection obtained either by spraying SA or by heat acclimation may be achieved by a common signal transduction pathway involving an early increase in H2O2.  相似文献   

14.
15.
Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H2O2-induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H2O2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H2O2-induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H2O2-induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H2O2-induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H2O2-induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H2O2-induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.  相似文献   

16.
17.
Devlin WS  Gustine DL 《Plant physiology》1992,100(3):1189-1195
The role of the oxidative burst, transient production of activated oxygen species such as H2O2 and superoxide (O2) in elicitation of phytoalexins and the hypersensitive reaction (HR) was investigated in white clover (Trifolium repens L.) and tobacco (Nicotiana tabacum L.). H2O2 and O2 production was measured as chemiluminescence (CL) mediated by luminol, which was added to suspension-cultured white clover just before measurement in an out-of-coincidence mode scintillation counter. Maximum CL occurred between 10 and 20 min after addition of 0.4 × 108 colony-forming units/mL of incompatible Pseudomonas corrugata or 158 μm HgCl2. Autoclaved P. corrugata produced a slightly higher response. Elicitation of cells with 25 μm HgCl2 did not produce CL. Preincubation of plant cells in superoxide dismutase, which converts O2 to H2O2, for 2 min before addition of bacteria did not significantly increase maximum CL levels (P ≥ 0.05). Preincubation of plant cells with catalase for 2 min before addition of bacteria prevented the increase in CL, confirming that H2O2 is the substrate for the luminol reaction. Addition of live bacteria or HgCl2 (25 and 158 μm) to white clover increased levels of the phytoalexin medicarpin during a 24-h period, but addition of autoclaved bacteria did not elicit formation of medicarpin. Preincubation of plant cells with catalase, which quenched the bacteria-induced oxidative burst, did not decrease phytoalexin accumulation. Live bacteria infiltrated into Havana 44 tobacco leaf panels induced development of the HR, but autoclaved bacteria did not. Incubation of live bacteria with superoxide dismutase and catalase before infiltration into tobacco leaves did not interfere with development of the HR. Tobacco leaf panels infiltrated with up to 158 μm HgCl2 did not develop an HR. These results suggest that an oxidative burst consisting of H2O2 and O2 does occur during these two plant defense responses, but it may not be a necessary element of the signaling system for HR and phytoalexin formation.  相似文献   

18.
KIF3AB is an N-terminal processive kinesin-2 family member best known for its role in intraflagellar transport. There has been significant interest in KIF3AB in defining the key principles that underlie the processivity of KIF3AB in comparison with homodimeric processive kinesins. To define the ATPase mechanism and coordination of KIF3A and KIF3B stepping, a presteady-state kinetic analysis was pursued. For these studies, a truncated murine KIF3AB was generated. The results presented show that microtubule association was fast at 5.7 μm−1 s−1, followed by rate-limiting ADP release at 12.8 s−1. ATP binding at 7.5 μm−1 s−1 was followed by an ATP-promoted isomerization at 84 s−1 to form the intermediate poised for ATP hydrolysis, which then occurred at 33 s−1. ATP hydrolysis was required for dissociation of the microtubule·KIF3AB complex, which was observed at 22 s−1. The dissociation step showed an apparent affinity for ATP that was very weak (K½,ATP at 133 μm). Moreover, the linear fit of the initial ATP concentration dependence of the dissociation kinetics revealed an apparent second-order rate constant at 0.09 μm−1 s−1, which is inconsistent with fast ATP binding at 7.5 μm−1 s−1 and a Kd,ATP at 6.1 μm. These results suggest that ATP binding per se cannot account for the apparent weak K½,ATP at 133 μm. The steady-state ATPase Km,ATP, as well as the dissociation kinetics, reveal an unusual property of KIF3AB that is not yet well understood and also suggests that the mechanochemistry of KIF3AB is tuned somewhat differently from homodimeric processive kinesins.  相似文献   

19.
ClC-3 is a Cl/H+ antiporter required for cytokine-induced intraendosomal reactive oxygen species (ROS) generation by Nox1. ClC-3 current is distinct from the swelling-activated chloride current (IClswell), but overexpression of ClC-3 can activate currents that resemble IClswell. Because H2O2 activates IClswell directly, we hypothesized that ClC-3-dependent, endosomal ROS production activates IClswell. Whole-cell perforated patch clamp methods were used to record Cl currents in cultured aortic vascular smooth muscle cells from wild type (WT) and ClC-3 null mice. Under isotonic conditions, tumor necrosis factor-α (TNF-α) (10 ng/ml) activated outwardly rectifying Cl currents with time-dependent inactivation in WT but not ClC-3 null cells. Inhibition by tamoxifen (10 μm) and by hypertonicity (340 mosm) identified them as IClswell. IClswell was also activated by H2O2 (500 μm), and the effect of TNF-α was completely inhibited by polyethylene glycol-catalase. ClC-3 expression induced IClswell in ClC-3 null cells in the absence of swelling or TNF-α, and this effect was also blocked by catalase. IClswell activation by hypotonicity (240 mosm) was only partially inhibited by catalase, and the size of these currents did not differ between WT and ClC-3 null cells. Disruption of endosome trafficking with either mutant Rab5 (S34N) or Rab11 (S25N) inhibited TNF-α-mediated activation of IClswell. Thrombin also activates ROS production by Nox1 but not in endosomes. Thrombin caused H2O2-dependent activation of IClswell, but this effect was not ClC-3- or Rab5-dependent. Thus, activation of IClswell by TNF-α requires ClC-3-dependent endosomal H2O2 production. This demonstrates a functional link between two distinct anion currents, ClC-3 and IClswell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号