首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we show that expression of the Westmead DMBA8 nonmetastatic cDNA 1 (WDNM1) gene was increased upon SFM and/or TNFα treatment, with a corresponding increase in apoptotic cells, and gradually decreased following re-stimulation with serum in HC11 mammary epithelial cells. TNFα induced WDNM1 expression showed the NFκB-dependent mechanism since it's expression was abrogated in IκBαM (super-repressor of NFκB)-transfected cells, but not those transfected with control vector. Furthermore, overexpression of WDNM1 suppressed growth and differentiation, and accelerated apoptosis of HC11 cells. Thus, our results demonstrate that WDNM1 gene expression, regulated by the TNFα-NFκB signal pathway, is associated with HC11 cell apoptosis.  相似文献   

2.
3.
4.
A phenotypic measure commonly used to determine the degree of lactogenic differentiation in mouse mammary epithelial cell cultures is the formation of dome shaped cell structures referred to as mammospheres 1. The HC11 cell line has been employed as a model system for the study of regulation of mammary lactogenic differentiation both in vitro and in vivo 2. The HC11 cells differentiate and synthesize milk proteins in response to treatment with lactogenic hormones. Following the growth of HC11 mouse mammary epithelial cells to confluence, lactogenic differentiation was induced by the addition of a combination of lactogenic hormones including dexamethasone, insulin, and prolactin, referred to as DIP. The HC11 cells induced to differentiate were photographed at times up to 120 hours post induction of differentiation and the number of mammospheres that appeared in each culture was enumerated. The size of the individual mammospheres correlates with the degree of differentiation and this is depicted in the images of the differentiating cells.Download video file.(57M, mp4)  相似文献   

5.
6.
CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines.  相似文献   

7.
GEN1, a Holliday junction resolvase, is involved in homologous repair of DNA double strand break and in maintaining centrosome integrity. Although GEN1 mutants have been reported in breast cancer patients and cell lines, little is currently known about the functions of GEN1 in the development and oncogenic transformation of mammary gland. In the present study, we demonstrate that GEN1 expression is correlated with mammary epithelial cell proliferation, differentiation in various physiological stages as well as casein. By immunofluorescence analysis, the centrosomal association of GEN1 is confirmed in mammary epithelial cells. Additionally, GEN1 is likely involved in DNA damage response of breast cancer cell lines. These results suggest that GEN1 may play an important role in the development of mammary gland; its response upon DNA damage indicates that GEN1 gene alteration may contribute to breast cancer formation.  相似文献   

8.
The ATP-binding cassette transporter, ABCG2, has been identified as a gene of significance in the regulation of bovine lactation by a number of gene mapping studies yet its role in lactational physiology remains unclear. We have used the potent ABCG2 specific inhibitor, Ko143, to investigate role of ABCG2 in primary bovine mammary epithelial cell (BMEC) proliferation and differentiation. After incubation with Ko143, the proliferation rate of BMECs was reduced at 48 and 72 hours by up to 80% (P?相似文献   

9.
The ATP-binding cassette transporter, ABCG2, has been identified as a gene of significance in the regulation of bovine lactation by a number of gene mapping studies yet its role in lactational physiology remains unclear. We have used the potent ABCG2 specific inhibitor, Ko143, to investigate role of ABCG2 in primary bovine mammary epithelial cell (BMEC) proliferation and differentiation. After incubation with Ko143, the proliferation rate of BMECs was reduced at 48 and 72 hours by up to 80% (P < 0.001), and the effect was dose-dependent (approximately 40% with 10 nM Ko143 and 80% with 20 nM Ko143). Morphological changes in BMEC mammosphere formation were not observed when co-incubated with Ko143. Our results suggested that ABCG2 plays a role in mammary epithelial cell proliferation and that functional polymorphisms in this gene may influence the cellular compartment of the mammary gland and potentially milk production.  相似文献   

10.
An entire mammary epithelial outgrowth, capable of full secretory differentiation, may comprise the progeny of a single cellular antecedent, i.e., may be generated from a single mammary epithelial stem cell. Early studies showed that any portion of an intact murine mammary gland containing epithelium could recapitulate an entire mammary epithelial tree on transplantation into an epithelium-free mammary fat pad. More recent studies have shown that a hierarchy of mammary stem/progenitor cells exists among the mammary epithelium and that their behavior and maintenance is dependent on signals generated both locally and systemically. In this review, we have attempted to develop the scientific saga surrounding the discovery and characterization of the murine mammary stem/progenitor cell hierarchy and to suggest further approaches that will enhance our knowledge and understanding of these cells and their role in both normal development and neoplasia.Before the 1980s there was little if any thought that the epithelium in murine mammary glands might be engendered by or supported by a mammary epithelial specific stem cell. In 1980, Rudland et al. wrote a review entitled “Stem cells in rat mammary development and cancer: A review” and noted that dimethylbenz [α] anthracene (DMBA)-induced rat carcinomas contained all three main types of epithelium found in the normal rat gland, those lining the ductal lumina, those lining the alveolar lumina, and myoepithelial cells (Rudland et al. 1980). They suggested, based on the two types of morphologically distinct epithelial (luminal and myoepithelial) cancer cells in the clonally derived Rama 25 cell line, that a single cell might give rise to both types and this also held true when these cells were inoculated into hosts and produced tumors. Williams and Daniel (Williams and Daniel 1983) suggested that the cap cells at the tip of the growing ducts in the mouse could give rise to both luminal and myoepithelial cells during ductal morphogenesis. However, no direct evidence that a single cell could produce both epithelial cell types in vivo was available. Nevertheless, in retrospect there was evidence that full regenerative activity for mammary epithelial existed in every part of the adult mammary epithelial tree.The experiments that originally showed the potential existence of stem cells in the mouse mammary gland were the pioneering studies of DeOme and his students, Les Faulkin and Charles Daniel. The approach they developed and optimized was serial transplantation of normal mammary gland into the cleared mammary fat pad of syngeneic mice (Deome et al. 1959; Faulkin and Deome 1960). The cleared mammary fat pad allowed the transplantation and growth of normal mammary cells into their normal anatomical site and under the influence of a normal physiological environment. Using this method, DeOme and coworkers showed that all portions of the normal mammary gland contains cells that will grow and fill the fat pad with a normal ductal mammary tree and respond to hormones with a normal differentiation program (Daniel 1975; Daniel et al. 1975). The progeny of the transplanted cells could be serially transplanted into the appropriate recipients for multiple times; however, unlike preneoplastic or neoplastic cells, the normal cells always senesced after multiple serial transplants, generally five to eight transplant generations (Daniel 1975). This was interpreted as indicating mammary stem cells possessed a finite proliferative activity (i.e., life span). This finite life span was a fundamental difference between normal and preneoplastic/neoplastic mammary cells. Cells with an indefinite in vivo life span (i.e., immortalized) have been identified in numerous mammary model systems, including MMTV-induced alveolar hyperplasia''s (Callahan and Smith 2000), chemical carcinogen-induced ductal and alveolar hyperplasia''s (Smith et al. 1978, 1980), hormonally induced alveolar hyperplasia, spontaneously immortalized ductal hyperplasia''s (Medina 2000, 2002), and cells containing specific genetic alterations (i.e., p53 deletion, Polyoma mT antigen) (Maglione et al. 2001; Medina et al. 2002).Subsequent studies showed that stem cells were located along the entire mammary tree and represented in all the different developmental states of the mammary gland. These stages included primary and tertiary ducts from 6- and 16-wk virgin glands, uniparous and multiparous regressed gland, 15-d pregnant and 10-d lactating glands (Smith and Medina 1988). Host age and reproductive history had little influence on the frequency of stem cells as measured by percent successful takes and life span assay (Young et al. 1971; Smith and Medina 1988). Mammary cells taken from 26-mo-old virgin mice had the same transplant potential as cells taken from 3-wk-old mice. Cell populations, from both, senesced after five transplant generations. Similarly, mammary cells in 12-mo-old multiparous mice had the same serial transplant potential as cells from 3-wk-old virgin mice (Young et al. 1971). Finally, continuous hormone stimulation did not induce additional loss of ductal growth potential. These results have important implications for understanding the role of mammary stem cells in normal mammary development because they emphasize that the mammary stem cell is a relatively quiescent cell that is only activated under conditions of gland repopulation (i.e., fetal growth stage and pubertal growth phase).  相似文献   

11.
In order to reduce cellular complexity in the study of the controls of the biochemical differentiation of mammary gland epithelium, approximately 100-fold purified epithelial cells from the mammary glands of virgin BALB/c mice were grown in three-dimensional collagen gels, and formed colonies that resembled mammary ductules. Here we report the induction of a biochemical differentiation in these purified epithelial cells in response to appropriate hormonal signals, starting from the state in the virgin mammary gland and ending with the stage characteristic of lactation. Induction of the synthesis of caseins was examined as a marker of mammary functional differentiation using sensitive immunologic autoradiography. The cells were maximally induced by the combination of the hormones, insulin, prolactin, aldosterone, and hydrocortisone, in both serum-containing and essentially serum-free media. The induction required insulin and prolactin, and was enhanced by the presence of the steroids. The cellular distribution of the induction was general, inasmuch as three-quarters of the hormone-stimulated cells were casein-positive according to immunocytochemistry. In order to assess the role of the three-dimensional conformation in the induction process, the purified mammary epithelial cells were grown as monolayers on plastic and collagen-coated surfaces. In these two-dimensional cultures, the synthesis of casein was not induced, suggesting that cell shape, orientation, and multicellular organization are important parameters in the hormonal induction of the biochemical differentiation. The finding of the induction of differentiation-specific proteins in cultures of purified epithelial cells from virgin glands allows examination of the molecular mechanisms involved in the complete induction process in the virtual absence of fat cells, fibroblasts, and the complex assortment of biochemical constituents of the mammary fat pad.  相似文献   

12.
《Autophagy》2013,9(5):484-486
The bovine mammary gland undergoes intensive remodeling during the lactation cycle, and the escalation of this process is observed during dry periods. The main type of cell death responsible for bovine mammary gland involution is apoptosis; however, there are also a lot of cells exhibiting morphological features of autophagy during drying off. Our in vitro and in vivo studies of bovine mammary gland physiology suggest that the enhanced process of autophagy, observed at the end of lactation and during dry periods, is the result of: (1) decreased level of lactogenic hormones (GH, IGF-I), (2) decreased GH-R and IGF-IRα expression, (3) increased expression of auto/paracrine apoptogenic peptides (IGFBPs, TGF-β1), (4) increased influence of sex steroids (17β-estradiol and progesterone) and (5) enhanced competition between the intensively developing fetus and the mother organism for nutritional and bioactive compounds. The above conditions may create a state of temporary malnutrition of mammary epithelial cells, which forces the cells to the induction of autophagy, as a mechanism for stabilizing intracellular supplies of energy and amino acids, especially during the enhanced activity of apoptogenic factors.

Addendum to:

Apoptosis and Autophagy in Mammary Gland Remodeling and Breast Cancer Chemotherapy

T. Motyl, B. Gajkowska, J. Zarzyńska, M. Gajewska and M. Lamparska-Przybysz

J Physiol Pharmacol 2006; 57:17-32  相似文献   

13.

Background

Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.

Methodology/Principal Findings

To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES) cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs) under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.

Conclusions/Significance

Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.  相似文献   

14.
牛乳腺上皮细胞的分离培养及其生物学特性   总被引:27,自引:0,他引:27  
采用胶原酶消化法和胰蛋白酶选择性消化法分离、培养和纯化牛乳腺上皮细胞。形态学观察表明,培养的细胞具有典型的上皮细胞形态特征;染色体分析结果表明,培养的细胞具有正常的染色体数目。通过荧光免疫细胞染色方法鉴定了培养的细胞表达上皮细胞特异的角蛋白5和8。该细胞在添加胰岛素、氢化可的松以及羊催乳素的无血清培养液中诱导培养时,用RT-PCR方法检测到了β-酪蛋白基因的转录。这些结果表明,分离培养的细胞是乳腺上皮细胞,这些细胞在诱导培养的条件下能够转录表达β-酪蛋白。  相似文献   

15.
采用噻唑蓝比色法检测赖氨酸、蛋氨酸对体外培养的奶牛乳腺上皮细胞增殖的影响。赖氨酸和蛋氨酸在培养基中的添加浓度分别为0、0.05、0.2、0.4、0.8、1.6、3.2、6.4、12.8、25.6mmol/L和0、0.025、0.1、0.2、0.4、0.8、1.6、3.2、6.4、12.8mmol/L;培养期为24、48和72h。结果表明,赖氨酸在0.8-1.6mmol/L、蛋氨酸在0.4-0.8mmol/L浓度范围内对体外培养的奶牛乳腺上皮细胞增殖的促进作用最明显且在48h时增殖作用最强(P0.0001)。  相似文献   

16.
The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77) as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44’s location in the cell.  相似文献   

17.
18.
早期生长反应基因1(early growth response gene 1, EGR1)属于锌指结构的转录因子,表达受多种因素调节,其蛋白至少参与对30种以上靶基因的调控. EGR1在前列腺癌中作为癌基因其表达量与肿瘤的恶性程度成正比,而在良性前列腺增生(benign prostatic hyperplasia, BPH)中其机制和功能尚不明确. EGR1在大鼠和人BPH组织中表达升高, 提示EGR1在BPH进程中发挥重要作用. 通过构建EGR1表达载体,以及EGR1稳定转染的良性前列腺增生上皮细胞系BPH-1,可见过表达EGR1的BPH-1细胞增殖能力升高. 通过转染siRNA将EGR1表达抑制,BPH 1细胞的增殖水平下降. 雌激素在BPH疾病进程中发挥重要作用, 在BPH 1细胞中,雌二醇 (estradiol, E2) 能促进EGR1的核迁移,从而激活其转录活性. 在EGR1稳定转染的BPH 1细胞系中胰岛素样生长因子2 (insulin like growth factor 2, IGF2) 的表达上调,表明EGR1可以调控IGF2的表达. 同时发现,E2可上调BPH-1细胞中 IGF2的表达,而将EGR1敲除后上调效果消失, 说明E2通过EGR1来调节IGF2的表达. E2对EGR1及其靶基因的调节可能是E2参与影响BPH的重要环节. 本文为进一步研究E2和EGR1在BPH中作用奠定了基础.  相似文献   

19.
In this report we describe the isolation of an isogenic pair of Brca1+/+ and Brca1-/-murine mammary epithelial cells (MMECs). These cells were isolated from Brca1conditional knock out mice which contained loxP sites flanking exon 11 of the Brca1gene (Brca1fl/fl) and then immortalized by infection with HPV-16E6 retrovirus to degradep53 protein. Brca1-/- MMECs were generated by deletion of exon 11 followingtransduction of Brca1fl/fl MMECs with a retroviral vector expressing Cre recombinase.Brca1-deficiency rendered MMECs sensitive to cis-platinum (II) diamine dichloride(CDDP) and methylmethane sulfonate (MMS). The Brca1+/+ and Brca1-/- MMECS is theonly known pair of isogenic mammary epithelial cell lines. The understanding of themechanisms of the CDDP sensitivity of the BRCA1-deficient mammary epithelial cellswould be very important in understanding how BRCA1-deficiency plays out in tissuespecific breast cancer chemotherapy. These studies support the role of BRCA1 in theCDDP-induced and MMS-induced DNA damage and repair by p53-independentpathways.  相似文献   

20.
Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman''s risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号