首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of pollinator exclusion, interparental distance, and supplementary hand pollination on reproduction and progeny vigor in Scorzonera humilis (Asteraceae), a rare plant of fragmented, nutrient-poor grasslands. Caged flowers produced no seeds and selfed flowers only very rarely, indicating that S. humilis is mainly self-incompatible. Seed production, seed mass, and seed germination following between-population crosses were consistently, but not significantly, higher than after within-population crosses. Seed set increased with local density of conspecifics, indicating that the reduced plant density in fragmented populations may reduce plant reproductive success. Seed set was pollen limited in all four populations studied. Supplementary hand-pollination strongly increased the survival of offspring, indicating that either pollinators transferred pollen from related individuals resulting in inbreeding depression in spite of the incompatibility system or that higher pollen loads increased pollen competition and the selectivity among gametes. In one of the populations, adding pollen from a different population strongly increased progeny fitness compared with both natural pollination and pollen supplementation from the same population. The results indicate that S. humilis is sensitive to inbreeding and that pollen limitation can reduce both the number and quality of offspring.  相似文献   

2.
The effects of self-fertilization, within-population crosses (WPC) and between-population crosses (BPC) on progeny fitness were investigated in the greenhouse for Scabiosa columbaria populations of varying size. Plants grown from field collected seeds were hand pollinated to produce selfed, WPC, and BPC progeny. The performance of these progenies was examined throughout the entire life cycle. The different pollination treatments did not significantly affect germination, seedling-to-adult survival, flowering percentage and the number of flower heads. But severe inbreeding depression was demonstrated for biomass production, root development, adult survival, and seed set. Additionally, multiplicative fitness functions were calculated to compare relative fitnesses for progeny. On average, WPC progeny showed a more than 4-fold, and BPC progeny an almost 10-fold, advantage over selfed progeny, indicating that S. columbaria is highly susceptible to inbreeding. No clear relationship was found between population size and level of inbreeding depression, suggesting that the genetic load has not yet been reduced substantially in the small populations. A significant positive correlation was found between plant dry weight and total fitness. In two out of six populations, the differences between the effects of the pollination treatments on dry weight increased significantly when seedlings were grown under competitive conditions. This result is interpreted as an enhancement of inbreeding depression under these conditions. It is argued that improvement of the genetic exchange between populations may lower the probability of population extinction.  相似文献   

3.
Traits associated with self-pollination are common features of island plant communities. In this work, we studied the pollination biology and the breeding system of Harrisia portoricensis, an island columnar cactus, to test for the presence of inbreeding and inbreeding depression. For H. portoricensis, which bears flowers with typical outcrossing morphology, the results from 322 h of direct observations and videotaping showed that visits to flowers by animals were uncommon. Controlled pollinations demonstrated that H. portoricensis has a partially self-compatible breeding system that it is not autogamous and thus requires an external mechanism for the movement of pollen to set fruit. We detected differences in seed size, seed mass, germination success, and multiplicative fitness estimates between self- and cross-pollination treatments. We found that progeny resulting from natural and self-pollination treatments showed signs of inbreeding depression compared with progeny resulting from cross-pollination; however, the magnitude of the inbreeding depression was less than 50%. Our combined results suggest that for this species an endogamous breeding system should be favored by natural selection.  相似文献   

4.
In rare plants that often occur in small or isolated populations the probability of selfing between close relatives is increased as a consequence of demographic stochasticity. The mode of pollination (selfing, outcrossing) may have considerable effects on seed traits and offspring performance and hence potential viability. Since current efforts aiming at the restoration of floodplain grasslands through the transfer of plant material from species-rich source stands may lead to the establishment of initially small populations consisting of founders from different populations, the present paper experimentally investigated the effects of pollen source and floral types (i.e. chasmogamous (CH) and cleistogamous (CL) flowers) on seed traits and offspring performance in three highly endangered violet species (Viola elatior, V. pumila, V. stagnina) of these grasslands. We estimated inbreeding depression and tested the performance of selfed and outcrossed offspring in two microbial environments, i.e. in soil inoculated with (i) non-sterile substrate from the same species (‘home’-conditions) and (ii) sterilised substrate.Plants produced more CL capsules than CH flowers. Pollinator exclusion had only small effects on CH seed production. CL seeds had a significantly lower mass per seed than CH seeds. This may be related to constraints in allocation or environmental conditions. Seedling growth was reduced in plants grown under ‘home’-conditions as compared to control soils. Under ‘home’-conditions, relative fitness of selfed seedlings of V. stagnina was significantly higher than that of crossed progeny. Our results suggest that high genetic differentiation among populations as a consequence of isolation may result in outbreeding depression, e.g., through biochemical or physiological incompatibilities between genes or the breaking of coadapted gene complexes. In V. stagnina, offspring fitness differed considerably between environments, but in general we found no indications for inbreeding depression in these rare species.  相似文献   

5.
Inbreeding depression is a reduction of fitness in the progeny of closely related individuals and its effects are assigned to selfing or biparental inbreeding. Vriesea gigantea is a self‐compatible bromeliad species distributed in the Brazilian Atlantic rainforest and habitat destruction and fragmentation and collection have decreased the natural populations. We aim to describe the occurrence of inbreeding depression (δ) in three natural populations of V. gigantea and to correlate this phenomenon with previous studies of fertility, genetic diversity, population genetic structure, gene flow, mating system and seed dispersal in this species. Fifty‐four adult plants were sampled and 108 flowers were used for pollination treatments (selfing, outcrossing and control). For adult plants, we analysed plant and inflorescence height, flower numbers and seed set. In the progenies, evaluated parameters included seed germination and seedling survival rate. The results indicated low to moderate levels of inbreeding depression in V. gigantea (δ = 0.02 to 0.39), in agreement with molecular data from a previous study. Vriesea gigantea populations tolerate some degree of inbreeding, which is consistent with previous results on fertility, mating system, genetic diversity and gene flow. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 312–319.  相似文献   

6.
Reintroductions are increasingly used to enhance declining populations, yet comparative data for critical germination and establishment phases are seldom available for both rare and common herbaceous perennials. After introducing a total of >1800 seeds, we compared experimentally manipulated and natural populations of widespread Silene douglasii var. douglasii relative to rare S. douglasii var. oraria, known in only three coastal headlands. Despite equivalent ex situ germination, oraria field plots produced significantly fewer juveniles than douglasii plots indicating that seedling survival limits plant establishment. We also evaluated transplant vs. seed reintroductions as restoration tools, the effect of inbreeding on fitness, and the potential importance of buried seed pools. Germination declined rapidly for seeds over 1-2 years old, and only 2.2% of newly collected seeds of oraria survived as seedlings. Transplant survival over 5 years was greatest for outbred progeny; furthermore, 75% of the new seedlings emerged near outbred progeny from the original reintroduction. Despite similar ovule numbers and pollinator visitation, transplants exhibited 49-179% maladaptation in the formerly grazed site, with significantly lower fruit and seed set than adults in more diverse natural populations. This study experimentally identifies several key factors affecting plant reintroductions, facilitating effective development of large-scale reintroduction strategies for native perennials.  相似文献   

7.
Inbreeding depression, or the decreased fitness of progeny derived from self-fertilization as compared to outcrossing, is thought to be the most general factor affecting the evolution of self-fertilization in plants. Nevertheless, data on inbreeding depression in fitness characters are almost nonexistent for perennials observed in their natural environments. In this study I measured inbreeding depression in both survival and fertility in two sympatric, short-lived, perennial herbs: hummingbird-pollinated Lobelia cardinalis (two populations) and bumblebee-pollinated L. siphilitica (one population). Crosses were performed by hand in the field, and seedlings germinated in the greenhouse. Levels of inbreeding depression were determined for one year in the greenhouse and for two to three years for seedlings transplanted back to the natural environment. Fertility was measured as flower number, which is highly correlated with seed production under natural conditions in these populations. Inbreeding depression was assessed in three ways: 1) survival and fertility within the different age intervals; 2) cumulative survival from the seed stage through each age interval; and 3) net fertility, or the expected fertility of a seed at different ages. Net fertility is a comprehensive measure of fitness combining survival and flower number. In all three populations, selfing had nonsignificant effects on the number and size of seeds. Lobelia siphilitica and one population of L. cardinalis exhibited significant levels of inbreeding depression between seed maturation and germination, excluding the consideration of possible differences in dormancy or longterm viability in the soil. There was no inbreeding depression in subsequent survival in the greenhouse in any population. In the field, significant survival differences between selfed and outcrossed progeny occurred only in two years and in only one population of L. cardinalis. For both survival and fertility there was little evidence for the expected differences among families in inbreeding depression. Compared to survival, inbreeding depression in fertility (flower number) tended to be much higher. By first-year flower production, the combined effects on survival and flower number caused inbreeding depression in net fertility to reach 54%, 34% and 71% for L. siphilitica and the two populations of L. cardinalis. By the end of the second year of flowering in the field, inbreeding depression in net fertility was 53% for L. siphilitica and 54% for one population of L. cardinalis. For the other population of L. cardinalis, these values were 76% through the second year of flowering and 83% through the third year. Such high levels of inbreeding depression should strongly influence selection on those characters affecting self-fertilization rates in these two species.  相似文献   

8.
Several workers have suggested that the rarity of androdioecy (the presence of males and hermaphrodites in a breeding population) in nature is due to the large fitness gain required by male plants in order to be maintained by selection. As part of an ongoing investigation of this hypothesis, we tested the effects of selfing on fitness in functionally androdioecious populations of Datisca glomerata. We compared progeny from self-fertilizations, cross-fertilizations with pollen from male plants only, cross-fertilizations with pollen from hermaphrodite plants only, and open-pollinated flowers for several measures of progeny fitness including seed weight, germination rate, and seedling weight. Significant inbreeding depression was observed for androdioecious populations of D. glomerata for both seed and seedling weights. However, no significant differences were observed across treatments for seed germination percentages. The observation of significant levels of inbreeding depression in this study, combined with prior evidence of threefold greater pollen production by males, may at least partially account for the large fitness increase required by males to be maintained by selection.  相似文献   

9.
Inbreeding may influence the intensity of sibling competition by altering the number of offspring produced or by changing plant morphology in ways that influence seed dispersion patterns. To test this possibility, effects of inbreeding on seed production and on traits that influence progeny density were measured using experimental pollinations of flowers of Cakile edentula var. lacustris. Different flowers on a plant were either hand pollinated with self pollen (with and without emasculation) or foreign pollen, or they were allowed to be pollinated naturally. Selfed flowers matured significantly fewer viable seeds than outcrossed flowers (10.3% less seed maturation with inbreeding depression of 19.2%), due in large part to a greater percentage of proximal seed abortions and lower germination success. Plants grown from selfed seeds tended to have lower seed production (37 fewer seeds on average, with inbreeding depression of 16.2%), caused in part by an increase in the percentage of fruits with proximal seed abortions, although this effect was not significant. Inbreeding depression in total fitness was 29.0%, which corresponds to a difference of 46 seeds per pollinated ovule. Selfing rate estimates were usually intermediate to high, indicating that inbreeding effects observed in this study would be present in naturally pollinated progeny. Although the influence of inbreeding directly on dispersal was negligible, the predicted reduction in sibling competition caused by reduced seed production resulted in an estimate of inbreeding depression of 17.5%, which is 11.5% lower than that measured under uniform conditions. Consequently, inbreeding depression estimated under natural dispersion patterns may be lower than that estimated under uniform conditions since seeds from self- and cross-pollination may not experience the same competitive environment in the field. Inbreeding in the maternal generation, therefore, could influence progeny fitness not only by determining the genetic composition of progeny, but also by influencing the competitive environment in which progeny grow.  相似文献   

10.
  • Self‐pollination by geitonogamy is likely in self‐compatible plants that simultaneously expose a large number of flowers to pollinators. However, progeny of these plants is often highly allogamous. Although mechanisms to increase cross‐pollination have been identified and studied, their relative importance has rarely been addressed simultaneously in plant populations.
  • We used Rosmarinus officinalis to explore factors that influence the probability of self‐fertilisation due to geitonogamy or that purge its consequences, focusing on their effects on seed germination and allogamy rate. We experimentally tested the effect of geitonogamy on the proportion of filled seeds and how it influences germination rate. During two field seasons, we studied how life history and flowering traits of individuals influence seed germination and allogamy rates of their progeny in wild populations at the extremes of the altitudinal range. The traits considered were plant size, population density, duration of the flowering season, number of open flowers, flowering synchrony among individuals within populations and proportion of male‐sterile flowers.
  • We found that most seeds obtained experimentally from self‐pollination were apparently healthy but empty, and that the proportion of filled seeds drove the differences in germination rate between self‐ and cross‐pollination experiments. Plants from wild populations consistently had low germination rate and high rate of allogamy, as determined with microsatellites. Germination rate related positively to the length of the flowering season, flowering synchrony and the ratio of male‐sterile flowers, whereas the rate of allogamous seedlings was positively related only to the ratio of male‐sterile flowers.
  • Rosemary plants purge most of the inbreeding caused by its pollination system by aborting the seeds. This study showed that the rates of seed germination and allogamy of the seedlings depend on a complex combination of factors that vary in space and time. Male sterility of flowers, length of the flowering season and flowering synchrony of individuals within populations all favour high rates of cross‐pollination, therefore increasing germination and allogamy rates. Flowering traits appear to be highly plastic and respond to local and seasonal conditions.
  相似文献   

11.
We studied inbreeding depression, growth context and maternal influence as constraints to fitness in the self-compatible, protandrous Dianthus guliae Janka, a threatened Italian endemic. We performed hand-pollinations to verify outcomes of self- and cross-fertilisation over two generations, and grew inbred and outbred D.?guliae offspring under different conditions - in pots, a common garden and field conditions (with/without nutrient addition). The environment influenced juvenile growth and flowering likelihood/rate, but had little effect on inbreeding depression. Significant interactions among genetic and environmental factors influenced female fertility. Overall, genetic factors strongly affected both early (seed mass, seed germination, early survival) and late (seed/ovule ratio) life-history traits. After the first pollination experiment, we detected higher mortality in the selfed progeny, which is possibly a consequence of inbreeding depression caused by over-expression of early-acting deleterious alleles. The second pollination induced a strong loss of reproductive fitness (seed production, seed mass) in inbred D.?guliae offspring, regardless of the pollination treatment (selfing/crossing); hence, a strong (genetic) maternal influence constrained early life-history traits of the second generation. Based on current knowledge, we conclude that self-compatibility does not prevent the detrimental effects of inbreeding in D.?guliae populations, and may increase the severe extinction risk if out-crossing rates decrease.  相似文献   

12.
Michaels HJ  Shi XJ  Mitchell RJ 《Oecologia》2008,154(4):651-661
We investigated the relationships among population size, offspring performance, and inbreeding depression (δ) in Lupinus perennis by examining the effect of population size category (large vs. small) on seed production and offspring performance for three pollination treatments (open pollination, hand crossing and hand selfing). In each of our four pairs of populations, one member of the pair was substantially larger than the other. We then grew seeds from this factorial design (2 sizes × 4 pairs × 3 pollination treatments) in the greenhouse to investigate whether population size affects offspring performance in a common environment, and how small size affects purging of the inbreeding load. Multiplicative performance across four early life-stage components (seed production, seedling emergence, seedling survival and seedling growth) of smaller populations was not significantly lower, although biomass of seedlings declined in smaller populations. Self-pollination reduced seed production, seedling emergence and seedling growth, reflecting substantial inbreeding depression (δ = 0.404 ± 0.043). Population size categories did not consistently differ in levels of inbreeding depression, suggesting that purging of genetic load in smaller populations has been limited, and that all populations still harbor inbreeding load. We also found a significant decrease in log performance with increases in the population inbreeding coefficient. These results indicate that even in seemingly large populations, lupines are susceptible to considerable fitness declines through both inbreeding load within populations, and drift load via genetic erosion and fixation of deleterious alleles between populations.  相似文献   

13.
The population characteristics of distylous species are highly sensitive to stochastic natural selection pressure.Therefore,populations growing under different environmental conditions may vary in floral morph ratios,potentially affecting female fitness and leading to inbreeding depression.However,the variation in offspring quality among populations as a result of inbreeding depression is poorly understood in distylous species.This study investigates variations in plant density,seed mass,seed viabilityfemale fitness,and post-dispersal inbreeding depression in both sexual morphs(long-styled and shortstyled plants)of the distylous Primula nivalis that were subjected to different pollination treatments along an elevational gradient from 1657 to 2704 m a.s.l.Population characteristics(morph plant density and ratio)and fruit set were significantly affected by sexual morph and elevation.Plant density and fruitset frequencies were lower for short-styled than for long-styled plants at 2704 m a.s.l.The seeds from the cross-pollinated flowers of both morphs were higher in quality than those of self-pollinated flowers.The female fitness of seeds from cross-pollinated flowers of both morphs was higher than that of seeds from open-pollinated and self-pollinated flowers.The female fitness of seeds from long-styled flowers was higher than that of seeds from short-styled flowers at all elevations.Inbreeding depression increased with elevation among plants with short-styled flowers but not among those with long-styled flowers.Variation in the elevation-dependent mating system might influence female fitness and affect inbreeding depression in both floral morphs.In conclusion,the low quality of seeds from short-styled flowers at high elevations might decrease short-styled flower frequency,affecting population characteristics.  相似文献   

14.
The evolution of separate sexes as a means of avoiding self-fertilization requires the controversial coexistence of large inbreeding depression and high selfing rate in the ancestral hermaphrodite population. Fitness components of adult females and hermaphrodites in nature, of their open-pollinated progeny, and of experimental selfs and outcrosses onto hermaphrodites were compared in endemic Hawaiian Bidens sandvicensis, all of whose known populations are gynodioecious, consisting of a mixture of females and hermaphrodites. Multilocus selfing rates of hermaphrodites were also estimated, and sex morph ratio monitored over four seasons in three populations of B. sandvicensis and one population of gynodioecious B. cervicata. Total mean inbreeding depression in seed set (in the glasshouse), germination rate (in an open-air nursery on Kauai), and first year survivorship and fecundity in the field were estimated as 0.94 (SE 0.04), and occurred primarily in drought months. Lower survivorship and fecundity of selfs were partially explained by their consistently smaller size. Open-pollinated seed of females had significantly lower germination rate, proportion flowering, and fecundity than outcrossed progeny of hermaphrodites, suggesting moderate biparental inbreeding in females and a lack of any non-outcrossing advantage to progeny of females. In all fitness components, open-pollinated progeny of hermaphrodites were inferior to those of females and to outcrosses, and in most components were superior to selfs. Total performance of open-pollinated progeny of females relative to those of hermaphrodites was calculated as 2.3 (SE = 0.4), but since inflorescences of females also set 20% to 50% more seed than those of hermaphrodites, their total relative ovule success was estimated as 3.2 (SE = 0.5). If inheritance of male sterility is nuclear, this superiority is sufficient to maintain females in frequencies over 20% in populations, whose actual frequencies ranged from 14% to 33%. In four populations, selfing rates of hermaphrodites, assayed in seedlings, were 0.50, 0.45, 0.25, and 0.30, but since substantial inbreeding depression occurred prior to germination, the mean selfing rate of hermaphrodite ovules exceeded 0.57. Female frequencies were significantly higher in the two populations with higher hermaphrodite selfing rate. These results suggest that inbreeding depression can exert a profound influence on the mating system of self-compatible plants on Hawaii and perhaps other oceanic islands, and can be sufficiently strong to electively favor the elimination of the male function.  相似文献   

15.
F. X. Pic  T. Koubek 《Acta Oecologica》2003,24(5-6):289-294
Heterocarpic plants are characterized by the production of distinct types of fruits that usually differ in their ecological behavior. In the Asteraceae, differences are mainly found between peripheral non-dispersal and central dispersal achenes (single-seeded fruits). Inbreeding depression is considered as an evolutionary force as it may reduce several fitness traits, and in the case of heterocarpic plants, it could influence fitness traits (e.g., seed set, germination rate, growth rate) of each fruit morph, which may have important ecological and evolutionary consequences. In particular, differential effects on fitness traits and dispersal of selfed and outcrossed progeny can strongly determine the viability of extant populations and the potential to colonize new habitats. We conducted a hand-pollination experiment in greenhouse conditions to test whether inbreeding affects the fitness of achene morphs in the heterocarpic herb Leontodon autumnalis (Asteraceae). Results show that achene morphs significantly differ in their ecological behavior, peripheral achenes germinating more and faster than central achenes. The significant interaction between pollination treatment and achene morph for germination probability might indicate a link between dormancy and mating system in L. autumnalis: germination was higher for outcrossed achenes in central achenes whereas the opposite pattern was exhibited by peripheral achenes. Selfing dramatically reduced seed set, probably as a consequence of strong self-incompatibility mechanisms rather than inbreeding effects. Inbreeding depression significantly affected late life-cycle traits, such as growth rate and biomass at flowering. Overall, results suggest that inbreeding depression seems to be an important selective force maintaining outcrossing in L. autumnalis.  相似文献   

16.
How females establish in populations of cosexuals is central to understanding the evolution of gender dimorphism in angiosperms. Inbreeding avoidance hypotheses propose that females can establish and be maintained if cosexual fitness is reduced because they self-fertilize, and their progeny express inbreeding depression. Here we assess the role of inbreeding avoidance in maintaining sexual system variation in Wurmbea biglandulosa. We estimated costs of self-pollination, mating patterns, and inbreeding depression in gender monomorphic (cosexuals only) and dimorphic (males and females) populations. Costs of selfing, estimated from seed set of experimentally self- and cross-pollinated flowers, were severe in both males and cosexuals (inbreeding depression, sigma = 0.86). In a field experiment, intact males that could self produced fewer seeds than both emasculated males and females, whereas seed set of intact and emasculated cosexuals did not differ. Thus, pollinator-mediated selfing reduces fitness of males but not cosexuals under natural conditions. Outcrossing rates of males revealed substantial selfing (t = 0.68), whereas females and cosexuals were outcrossed (0.92 and 0.97). For males, progeny inbreeding coefficients exceeded parental coefficients (0.220 vs. 0.009), whereas for females and cosexuals these coefficients did not differ and approached zero. Differences in coefficients between males and their progeny indicate that selfed progeny express severe inbreeding depression (sigma = 0.93). Combined with inbreeding depression for seed set, cumulative sigma = 0.99, indicating that most or all selfed zygotes fail to reach reproductive maturity. We propose that present sexual system variation in W. biglandulosa is maintained by high inbreeding depression coupled with differences in selfing rates among monomorphic and dimorphic populations.  相似文献   

17.
Plants that live in fragmented landscapes, where populations are isolated from each other and in which long-distance dispersal is essential for colonization of empty sites, reproduction should be favoured by self-compatibility (Baker's law). Nevertheless, outcrossing mechanisms, such as self-incompatibility and dichogamy, are common in many species and are often maintained by inbreeding depression in the fitness of selfed progeny. Here, we studied the breeding system and the consequences of selfing and sister mating in Campanula thyrsoides, a short-lived perennial monocarp, which is found in the naturally fragmented landscape of the Alps. An experiment with controlled pollinations was set up in the common garden with plants grown from seeds originating from 14 seed families, collected in the siliceous Central Alps, where this plant is found on isolated carbonate bearing outcrops.Our results indicate that C. thyrsoides has a strong self-incompatibility system (SI) with no or low seed set in selfed flowers compared to outcrossed and sister-crossed flowers. Moreover, the SI system in C. thyrsoides did not break down with flower age as in some other Campanula species. Surprisingly, there was no significant difference in seed set, seed weight, germination percentage, seedling survival and size between outcrossed and sister-crossed offspring, which indicates no inbreeding depression.We suggest that the absence of inbreeding depression in this outcrossing species might be a result of frequent bottlenecks during colonization of the isolated habitats in the alpine landscape.  相似文献   

18.
Edge populations are frequently small and subject to stressful conditions that may compromise their long‐term viability. Inbreeding can play an important role in small populations by reducing genetic diversity, leading to the fixation of deleterious mutations and, finally, carrying populations to an extinction vortex through inbreeding depression. Although stressful conditions may enhance the intensity of inbreeding depression, evidence to date is inconclusive in marginal habitats. Local adaptation, promoting native genotypes, and gene flow, reducing allele fixation, are two factors that can have different effects on the intensity of inbreeding depression. Three populations of Silene ciliata distributed across an elevation gradient at the southernmost edge of the species distribution were used for this study. Several fitness components – germination, survival and growth rate – were compared between inbred seedlings and seedlings from within‐ and between‐population outcrosses, both in the field and controlled conditions. Overall, inbred seedlings had lower fitness than outcrossed seedlings. For most of the variables analysed, similar inbreeding depression effects were found in all three populations, but, for seed weight and seedling survival curve, inbreeding depression was only found in the low altitude population. Similarly, inbreeding depression was more evident in the field than in controlled chamber conditions. Outcrosses between populations contributed to an increase in most fitness estimates and populations, suggesting that the benefits of reducing inbreeding depression overrode the potentially deleterious effects of disrupting local adaptation. Our results suggest that inbreeding depression plays an important role in the fitness of early life stages of Silene ciliata at its southernmost distribution limit, but only provided partial support to the hypothesis that stressful conditions enhance the expression of inbreeding depression.  相似文献   

19.
Isolation and small size of populations as a result of habitat destruction and fragmentation may negatively affect plant fitness through pollinator limitation and increased levels of inbreeding. To increase genetic variation in small populations of rare plants artificial gene flow has been suggested as a management tool. We investigated whether pollinator limitation and inbreeding depression could reduce fitness in Gentianella germanica, an endangered biennial of increasingly fragmented calcareous grasslands in Central Europe. We experimentally excluded pollinators and generated progenies by hand-pollinating flowers with pollen from different distances. G. germanica was highly selfing. Pollinator exclusion strongly reduced seed set, indicating that pollinator limitation could potentially reduce plant fitness. Germination rate as well as number of leaves and rosette size of progeny from 10-m crosses was higher than that of progeny from open pollinations, self-, 1-m, and interpopulation crosses. After 6 mo of growth differences in the number of surviving plants persisted, whereas differences in plant size did not. The results suggest that inbreeding depression may reduce plant performance in G. germanica. Outbreeding depression in the performance of progeny from interpopulation crosses indicates that caution is necessary in using artificial interpopulation gene flow as a management tool.  相似文献   

20.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号