首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Tumor necrosis factor inhibits human myogenesis in vitro.   总被引:15,自引:5,他引:10       下载免费PDF全文
We examined the effects of human recombinant tumor necrosis factor-alpha (TNF) on human primary myoblasts. When added to proliferating myoblasts, TNF inhibited the expression of alpha-cardiac actin, a muscle-specific gene whose expression is observed at low levels in human myoblasts. TNF also inhibited muscle differentiation as measured by several parameters, including cell fusion and the expression of other muscle-specific genes, such as alpha-skeletal actin and myosin heavy chain. Muscle cells were sensitive to TNF in a narrow temporal window of differentiation. Northern (RNA) blot and immunofluorescence analyses revealed that human muscle gene expression became unresponsive to TNF coincident with myoblast differentiation. When TNF was added to differentiated myotubes, there was no effect on muscle gene expression. In contrast, TNF-inducible mRNAs such as interferon beta-2 still responded, suggesting that the signal mediated by TNF binding to its receptor had no effect on muscle-specific genes after differentiation.  相似文献   

4.
5.
6.
The messenger RNA of the rice seed storage protein prolamine is targeted to the endoplasmic reticulum (ER) membranes surrounding prolamine protein bodies via a mechanism, which is dependent upon both RNA sorting signals and the actin cytoskeleton. In this study we have used an RNA bait corresponding to the previously characterized 5′CDS prolamine cis-localization sequence for the capture of RNA binding proteins (RBPs) from cytoskeleton-enriched fractions of developing rice seed. In comparison to a control RNA, the cis-localization RNA bait sequence led to the capture of a much larger number of proteins, 18 of which have been identified by tandem mass spectrometry. Western blots demonstrate that several of the candidate proteins analyzed to date show good to excellent specificity for binding to cis-localization sequences over the control RNA bait. Temporal expression studies showed that steady state protein levels for one RNA binding protein, RBP-A, paralleled prolamine gene expression. Immunoprecipitation studies showed that RBP-A is bound to prolamine and glutelin RNAs in vivo, supporting a direct role in storage protein gene expression. Using confocal immunofluorescence microscopy, RBP-A was found to be distributed to multiple compartments in the cell. In addition to the nucleus, RBP-A co-localizes with microtubules and is associated with cortical ER membranes. Collectively, these results indicate that employing a combination of in vitro binding and in vivo binding and localization studies is a valid strategy for the identification of putative prolamine mRNA binding proteins, such as RBP-A, which play a role in controlling expression of storage protein mRNAs in the cytoplasm.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The interrelationship between commitment (irreversible withdrawal from the cell cycle) and muscle-specific gene expression was analyzed with the myogenic cell line ts 3b-2, which is temperature sensitive for commitment and cell fusion. The rates of synthesis and levels of accumulation of muscle-specific mRNAs and proteins in the ts 3b-2 cells at permissive and nonpermissive temperatures are comparable, indicating that neither commitment nor cell fusion is required for induction of muscle-specific gene expression. In the absence of commitment, the cells are reversibly withdrawn from the cell cycle during gene induction, and expression of the muscle-specific genes is deinduced upon the switch to growth-stimulating conditions. The deinduction reflects coordinate and preferential cessation of muscle-specific mRNA synthesis, coupled with destabilization of the muscle-specific mRNAs in the cytoplasm, without effect on constitutively expressed housekeeping protein genes. The phenotype of the ts 3b-2 cells demonstrates that commitment and muscle-specific gene expression are both required, but alone are insufficient, to produce the terminally differentiated muscle phenotype.  相似文献   

14.
Growing evidence indicates that both seizure (glutamate) and cocaine (dopamine) treatment modulate synaptic plasticity within the mesolimbic region of the CNS. Activation of glutamatergic neurons depends on the localized translation of neuronal mRNA products involved in modulating synaptic plasticity. In this study, we demonstrate the dendritic localization of HuR and HuD RNA‐binding proteins (RBPs) and their association with neuronal mRNAs following these two paradigms of seizure and cocaine treatment. Both the ubiquitously expressed HuR and neuronal HuD RBPs were detected in different regions as well as within dendrites of the brain and in dissociated neurons. Quantitative analysis revealed an increase in HuR, HuD and p‐glycogen synthase kinase 3β (GSK3β) protein levels as well as neuronal mRNAs encoding Homer, CaMKIIα, vascular early response gene, GAP‐43, neuritin, and neuroligin protein products following either seizure or cocaine treatment. Inhibition of the Akt/GSK3β signaling pathway by acute or chronic LiCl treatment revealed changes in HuR, HuD, pGSK3β, p‐Akt, and β‐catenin protein levels. In addition, a genetically engineered hyperdopaminergic mouse model (dopamine transporter knockout) revealed decreased expression of HuR protein levels, but no significant change was observed in HuD or fragile‐X mental retardation protein RBPs. Finally, our data suggest that HuR and HuD RBPs potentially interact directly with neuronal mRNAs important for differentiation and synaptic plasticity.  相似文献   

15.
16.
17.
18.
19.
20.
The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA‐binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA‐binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA–protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin‐1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure‐dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号