首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR−/− mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.  相似文献   

2.
Osteosarcoma is the most common primary malignant bone tumor in children and young adults. Surgical resection and adjunctive chemotherapy are the only widely available options of treatment for this disease. Anti-tumor compound 2-Methoxyestradiol (2-ME) triggers cell death through the induction of apoptosis in osteosarcoma cells, but not in normal osteoblasts. In this report, we have investigated whether autophagy plays a role in 2-ME actions on osteosarcoma cells. Transmission electron microscopy imaging shows that 2-ME treatment leads to the accumulation of autophagosomes in human osteosarcoma cells. 2-ME induces the conversion of the microtubule-associated protein LC3-I to LC3-II, a biochemical marker of autophagy that is correlated with the formation of autophagosomes. Conversion to LC3-II is accompanied by protein degradation in 2-ME-treated cells. 2-ME does not induce autophagosome formation in normal primary human osteoblasts. In addition, 2-ME-dependent autophagosome formation in osteosarcoma cells requires ATG7 expression. Furthermore, 2-ME does not induce accumulation of autophagosomes in osteosarcoma cells that express dominant negative mutant RNA-dependent protein kinase (PKR) and are resistant to anti-proliferative and anti-tumor effects of 2-ME. Taken together, our study shows that 2-ME treatment induces PKR-dependent autophagy in osteosarcoma cells, and that autophagy could play an important role in 2-ME-mediated anti-tumor actions and in the control of osteosarcoma.  相似文献   

3.
4.
Although mutations in the parkin gene are frequently associated with familial Parkinsonism, emerging evidence suggests that parkin also plays a role in cancers as a putative tumor suppressor. Supporting this, we show here that parkin expression is dramatically reduced in several breast cancer-derived cell lines as well as in primary breast cancer tissues. Importantly, we found that ectopic parkin expression in parkin-deficient breast cancer cells mitigates their proliferation rate both in vitro and in vivo, as well as reduces the capacity of these cells to migrate. Cell cycle analysis revealed the arrestment of a significant percentage of parkin-expressing breast cancer cells at the G1-phase. However, we did not observe significant changes in the levels of the G1-associated cyclin D1 and E. On the other hand, the level of cyclin-dependent kinase 6 (CDK6) is dramatically and selectively elevated in parkin-expressing breast cancer cells, the extent of which correlates well with the expression of parkin. Interestingly, a recent study demonstrated that CDK6 restrains the proliferation of breast cancer cells. Taken together, our results support a negative role for parkin in tumorigenesis and provide a potential mechanism by which parkin exerts its suppressing effects on breast cancer cell proliferation.  相似文献   

5.
Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.  相似文献   

6.
7.
ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling.  相似文献   

8.
Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells.Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death.Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.  相似文献   

9.
The human double-stranded RNA (dsRNA)-dependent protein kinase PKR inhibits protein synthesis by phosphorylating translation initiation factor 2α (eIF2α). Vaccinia virus E3L encodes a dsRNA binding protein that inhibits PKR in virus-infected cells, presumably by sequestering dsRNA activators. Expression of PKR in Saccharomyces cerevisiae inhibits protein synthesis by phosphorylation of eIF2α, dependent on its two dsRNA binding motifs (DRBMs). We found that expression of E3 in yeast overcomes the lethal effect of PKR in a manner requiring key residues (Lys-167 and Arg-168) needed for dsRNA binding by E3 in vitro. Unexpectedly, the N-terminal half of E3, and residue Trp-66 in particular, also is required for anti-PKR function. Because the E3 N-terminal region does not contribute to dsRNA binding in vitro, it appears that sequestering dsRNA is not the sole function of E3 needed for inhibition of PKR. This conclusion was supported by the fact that E3 activity was antagonized, not augmented, by overexpressing the catalytically defective PKR-K296R protein containing functional DRBMs. Coimmunoprecipitation experiments showed that a majority of PKR in yeast extracts was in a complex with E3, whose formation was completely dependent on the dsRNA binding activity of E3 and enhanced by the N-terminal half of E3. In yeast two-hybrid assays and in vitro protein binding experiments, segments of E3 and PKR containing their respective DRBMs interacted in a manner requiring E3 residues Lys-167 and Arg-168. We also detected interactions between PKR and the N-terminal half of E3 in the yeast two-hybrid and λ repressor dimerization assays. In the latter case, the N-terminal half of E3 interacted with the kinase domain of PKR, dependent on E3 residue Trp-66. We propose that effective inhibition of PKR in yeast requires formation of an E3-PKR-dsRNA complex, in which the N-terminal half of E3 physically interacts with the protein kinase domain of PKR.  相似文献   

10.
Nemo-like kinase (NLK), a proline-directed serine/threonine kinase regulated by phosphorylation, can be localized in the cytosol or in the nucleus. Whether the localization of NLK can affect cell survival or cell apoptosis is yet to be disclosed. In the present study we found that NLK was mainly localized in the nuclei of breast cancer cells, in contrast to a cytosolic localization in non-cancerous breast epithelial cells. The nuclear localization of NLK was mediated through direct interaction with Heat shock protein 27 (HSP27) which further protected cancer cells from apoptosis. The present study provides evidence of a novel mechanism by which HSP27 recognizes NLK in the breast cancer cells and prevents NLK-mediated cell apoptosis.  相似文献   

11.
Cdc42 effector protein-4 (CEP4) was recently identified by our laboratory to be a substrate of multiple PKC isoforms in non-transformed MCF-10A human breast cells. The significance of phosphorylated CEP4 to PKC-stimulated motility of MCF-10A cells was evaluated. Single site mutants at Ser residues embedded in potential PKC consensus sites (Ser18, Ser77, Ser80, and Ser86) were individually replaced with Asp residues to simulate phosphorylation. Following expression in weakly motile MCF-10A cells, the S18D and S80D mutants each promoted increased motility, and the double mutant (S18D/S80D) produced a stronger effect. MS/MS analysis verified that Ser18 and Ser80 were directly phosphorylated by PKCα in vitro. Phosphorylation of CEP4 severely diminished its affinity for Cdc42 while promoting Rac activation and formation of filopodia (microspikes). In contrast, the phosphorylation-resistant double mutant S18A/S80A-CEP4 blocked CEP4 phosphorylation and inhibited motility of MCF-10A cells that had been stimulated with PKC activator diacylglycerol lactone. In view of the dissociation of phospho-CEP4 from Cdc42, intracellular binding partners were explored by expressing each CEP4 double mutant from a tandem affinity purification vector followed by affinity chromatography, SDS-PAGE, and identification of protein bands evident only with S18D/S80D-CEP4. One binding partner was identified as tumor endothelial marker-4 (TEM4; ARHGEF17), a guanine nucleotide exchange factor that is involved in migration. In motile cells expressing S18D/S80D-CEP4, knockdown of TEM4 inhibited both Rac activation and motility. These findings support a model in which PKC-mediated phosphorylation of CEP4 at Ser18 and Ser80 causes its dissociation from Cdc42, thereby increasing its affinity for TEM4 and producing Rac activation, filopodium formation, and cell motility.  相似文献   

12.
13.
14.
Regulation of Cell Motility by Mitogen-activated Protein Kinase   总被引:29,自引:0,他引:29       下载免费PDF全文
Cell interaction with adhesive proteins or growth factors in the extracellular matrix initiates Ras/ mitogen-activated protein (MAP) kinase signaling. Evidence is provided that MAP kinase (ERK1 and ERK2) influences the cells' motility machinery by phosphorylating and, thereby, enhancing myosin light chain kinase (MLCK) activity leading to phosphorylation of myosin light chains (MLC). Inhibition of MAP kinase activity causes decreased MLCK function, MLC phosphorylation, and cell migration on extracellular matrix proteins. In contrast, expression of mutationally active MAP kinase kinase causes activation of MAP kinase leading to phosphorylation of MLCK and MLC and enhanced cell migration. In vitro results support these findings since ERK-phosphorylated MLCK has an increased capacity to phosphorylate MLC and shows increased sensitivity to calmodulin. Thus, we define a signaling pathway directly downstream of MAP kinase, influencing cell migration on the extracellular matrix.  相似文献   

15.
The genes encoding P68 and P65 (PRKR), the human and mouse interferon-inducible dsRNA-dependent protein kinases, respectively, have been mapped to a single locus on human chromosome 2 (band p21) and on mouse chromosome 17 (band E2). These kinases have been implicated in the antiviral response mediated by interferon since their activation by virus-specific dsRNAs can lead to the inhibition of protein synthesis. Recently we have shown that the dsRNA-dependent kinase also may function as a tumor suppressor gene since defective mutant proteins induced malignant transformation. Identification of the chromosomal location of human PRKR permitted a survey of translocations, deletions, or other rearrangement events involving this segment of chromosome 2 in a variety of human malignancies. Finally, our results define a new region of conservation between the distal part of the short arm of chromosome 2 (band p21) and band E2 of mouse chromosome 17.  相似文献   

16.
17.
The insulin-like growth factor receptor I (IGF-IR) plays an essential role in transformation by promoting cell growth and protecting cancer cells from apoptosis. We have recently demonstrated that the IGF-IR is overexpressed in invasive bladder cancer tissues and promotes motility and invasion of urothelial carcinoma cells. These effects require IGF-I-induced Akt- and MAPK-dependent activation of paxillin. The latter co-localizes with focal adhesion kinases (FAK) at dynamic focal adhesions and is critical for promoting motility of urothelial cancer cells. FAK and its homolog Proline-rich tyrosine kinase 2 (Pyk2) modulate paxillin activation; however, their role in regulating IGF-IR-dependent signaling and motility in bladder cancer has not been established. In this study we demonstrate that FAK was not required for IGF-IR-dependent signaling and motility of invasive urothelial carcinoma cells. On the contrary, Pyk2, which was strongly activated by IGF-I, was critical for IGF-IR-dependent motility and invasion and regulated IGF-I-dependent activation of the Akt and MAPK pathways. Using immunofluorescence and AQUA analysis we further discovered that Pyk2 was overexpressed in bladder cancer tissues as compared to normal tissue controls. Significantly, in urothelial carcinoma tissues there was increased Pyk2 localization in the nuclei as compared to normal tissue controls. These results provide the first evidence of a specific Pyk2 activity in regulating IGF-IR-dependent motility and invasion of bladder cancer cells suggesting that Pyk2 and the IGF-IR may play a critical role in the invasive phenotype in urothelial neoplasia. In addition, Pyk2 and the IGF-IR may serve as novel biomarkers with diagnostic and prognostic significance in bladder cancer.  相似文献   

18.
19.
Protein kinase C (PKC) plays a key role in cellular events including proliferation, survival and differentiation. Our previous study showed the effect of phorbol 12-myristate 13-acetate (PMA), a PKC activator, inducing a decrease in retinal cells proliferation. This effect was mediated by muscarinic type 1 receptors (M1) activation and brain derived neurotrophic factor (BDNF) treatment also induced a decrease in cell proliferation. Based on these results we analyzed the expression of either M1 receptors or BDNF following PMA treatment of retinal cell cultures. Our data demonstrated that PMA induced a decrease in both protein expressions after 48 h in culture. However, after 45 min, PMA induced a transient increase in BDNF expression and a decrease in M1 receptors expression. Analyzing the expression of M1 receptors and BDNF during the postnatal development in vivo, we observed a decrease in both proteins. Taken together our results suggest the involvement of PKC in the control of M1 expression in retinal cells.  相似文献   

20.
The epidermal growth factor receptor (EGFR) is important for normal development, differentiation, and cell proliferation. Deregulation of EGFR has been observed in breast cancer. EGFR and signal pathways activated by these receptors have been associated with an advanced tumor stage and a poor clinical prognosis in breast cancer, however, the precise mechanisms responsible for this process are still not known. Here we show that treatment of MCF-7 breast cancer cells with EGF activated Akt and ERK, induced morphological changes, and increased cell motility. In addition, the constitutive expression of Raf-1 and the use of a MEK inhibitor demonstrated the participation of the Raf/MEK/ERK pathway in these processes. Importantly we detected that EGF induced MRP-1, 3, 5 and 7 gene expression and an increase in MRP1 promoter activity. In conclusion, treatment of MCF-7 breast cancer cells with EGF, in the absence of other growth factors, resulted in activation of EGFR signal transduction pathways; which were related with cell motility and drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号