首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formin proteins, characterized by the presence of conserved formin homology (FH) domains, play important roles in cytoskeletal regulation via their abilities to nucleate actin filament formation and to interact with multiple other proteins involved in cytoskeletal regulation. The C-terminal FH2 domain of formins is key for actin filament interactions and has been implicated in playing a role in interactions with microtubules. Inverted formin 1 (INF1) is unusual among the formin family in having the conserved FH1 and FH2 domains in its N-terminal half, with its C-terminal half being composed of a unique polypeptide sequence. In this study, we have examined a potential role for INF1 in regulating microtubule structure. INF1 associates discretely with microtubules, and this association is dependent on a novel C-terminal microtubule-binding domain. INF1 expressed in fibroblast cells induced actin stress fiber formation, coalignment of microtubules with actin filaments, and the formation of bundled, acetylated microtubules. Endogenous INF1 showed an association with acetylated microtubules, and knockdown of INF1 resulted in decreased levels of acetylated microtubules. Our data suggests a role for INF1 in microtubule modification and potentially in coordinating microtubule and F-actin structure.  相似文献   

2.
A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (K(d) < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements.  相似文献   

3.
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.  相似文献   

4.
The Golgi apparatus is the central hub of intracellular trafficking and consists of tethered stacks of cis, medial, and trans cisternae. In mammalian cells, these cisternae are stitched together as a perinuclear Golgi ribbon, which is required for the establishment of cell polarity and normal subcellular organization. We previously identified FHDC1 (also known as INF1) as a unique microtubule-binding member of the formin family of cytoskeletal-remodeling proteins. We show here that endogenous FHDC1 regulates Golgi ribbon formation and has an apparent preferential association with the Golgi-derived microtubule network. Knockdown of FHDC1 expression results in defective Golgi assembly and suggests a role for FHDC1 in maintenance of the Golgi-derived microtubule network. Similarly, overexpression of FHDC1 induces dispersion of the Golgi ribbon into functional ministacks. This effect is independent of centrosome-derived microtubules and instead likely requires the interaction between the FHDC1 microtubule-binding domain and the Golgi-derived microtubule network. These effects also depend on the interaction between the FHDC1 FH2 domain and the actin cytoskeleton. Thus our results suggest that the coordination of actin and microtubule dynamics by FHDC1 is required for normal Golgi ribbon formation.  相似文献   

5.
The formins: active scaffolds that remodel the cytoskeleton   总被引:29,自引:0,他引:29  
Evolutionarily conserved in eukaryotes, formin homology (FH) proteins, or formins, exert their effects on the actin and microtubule (MT) networks during meiosis, mitosis, the maintenance of cell polarity, vesicular trafficking, signaling to the nucleus and embryonic development. Once thought to be only molecular scaffolds that indirectly affected cellular functions through the binding of other proteins, recent in vitro studies have illustrated that they can function as actin nucleators in the formation of new filaments. The connection between formins and MTs is less well understood. In yeast, the MT effects appear to be dependent on the ability of formins to generate polarized actin cables whereas, in mammalian cells, formin signals that cause MT stabilization and polarization might be more direct. A subclass of formins, the Diaphanous-related formins (Drfs), can act as effectors for Rho small GTPases, yet it is not clear what GTPase binding contributes to formin function.  相似文献   

6.
Formins constitute a large family of proteins that regulate the dynamics and organization of both the actin and microtubule cytoskeletons. Previously we showed that the formin mDia1 helps tether microtubules at the cell cortex, acting downstream of the ErbB2 receptor tyrosine kinase. Here we further study the contributions of mDia1 and its two most closely related formins, mDia2 and mDia3, to cortical microtubule capture and ErbB2-dependent breast carcinoma cell migration. We find that depletion of each of these three formins strongly disrupts chemotaxis without significantly affecting actin-based structures. Further, all three formins are required for formation of cortical microtubules in a nonredundant manner, and formin proteins defective in actin polymerization remain active for microtubule capture. Using affinity purification and mass spectrometry analysis, we identify differential binding partners of the formin-homology domain 2 (FH2) of mDia1, mDia2, and mDia3, which may explain their nonredundant roles in microtubule capture. The FH2 domain of mDia1 specifically interacts with Rab6-interacting protein 2 (Rab6IP2). Further, mDia1 is required for cortical localization of Rab6IP2, and concomitant depletion of Rab6IP2 and IQGAP1 severely disrupts cortical capture of microtubules, demonstrating the coinvolvement of mDia1, IQGAP1, and Rab6IP2 in microtubule tethering at the leading edge.  相似文献   

7.
Zhang Z  Zhang Y  Tan H  Wang Y  Li G  Liang W  Yuan Z  Hu J  Ren H  Zhang D 《The Plant cell》2011,23(2):681-700
Multicellular organisms contain a large number of formins; however, their physiological roles in plants remain poorly understood. Here, we reveal that formin homology 5 (FH5), a type II formin mutated in rice morphology determinant (rmd), plays a crucial role in determining rice (Oryza sativa) morphology. FH5/RMD encodes a formin-like protein consisting of an N-terminal phosphatase tensin (PTEN)-like domain, an FH1 domain, and an FH2 domain. The rmd mutants display a bending growth pattern in seedlings, are stunted as adult plants, and have aberrant inflorescence (panicle) and seed shape. Cytological analysis showed that rmd mutants have severe cell elongation defects and abnormal microtubule and microfilament arrays. FH5/RMD is ubiquitously expressed in rice tissues, and its protein localization to the chloroplast surface is mediated by the PTEN domain. Biochemical assays demonstrated that recombinant FH5 protein can nucleate actin polymerization from monomeric G-actin or actin/profilin complexes, cap the barbed end of actin filaments, and bundle actin filaments in vitro. Moreover, FH5 can directly bind to and bundle microtubules through its FH2 domain in vitro. Our findings suggest that the rice formin protein FH5 plays a critical role in determining plant morphology by regulating actin dynamics and proper spatial organization of microtubules and microfilaments.  相似文献   

8.
Formin proteins modulate both nucleation and elongation of actin filaments through processive movement of their dimeric formin homology 2 (FH2) domains with filament barbed ends. Mammals possess at least 15 formin genes. A subset of formins termed "diaphanous formins" are regulated by autoinhibition through interaction between an N-terminal diaphanous inhibitory domain (DID) and a C-terminal diaphanous autoregulatory domain (DAD). Here, we found several striking features for the mouse formin, INF2. First, INF2 interacted directly with actin through a region C-terminal to the FH2. This second interacting region sequesters actin monomers, an activity that is dependent on a WASP homology 2 (WH2) motif. Second, the combination of the FH2 and C-terminal regions of INF2 resulted in its curious ability to accelerate both polymerization and depolymerization of actin filaments. The mechanism of the depolymerization activity, which is novel for formin proteins, involves both the monomer binding ability of the WH2 and a potent severing activity that is dependent on covalent attachment of the FH2 to the C terminus. Phosphate inhibits both the depolymerization and severing activities of INF2, suggesting that phosphate release from actin subunits in the filament is a trigger for depolymerization. Third, INF2 contains an N-terminal DID, and the WH2 motif likely doubles as a DAD in an autoinhibitory interaction.  相似文献   

9.
Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.  相似文献   

10.
11.
Mao Y 《Trends in cell biology》2011,21(11):625-629
The mammalian diaphanous-related (mDia) formin proteins are well known for their actin-nucleation and filament-elongation activities in mediating actin dynamics. They also directly bind to microtubules and regulate microtubule stabilization at the leading edge of the cell during cell migration. Recently, the formin mDia3 was shown to associate with the kinetochore and to contribute to metaphase chromosome alignment, a process in which kinetochores form stable attachments with growing and shrinking microtubules. We suggest that the formin mDia3 could contribute to the regulation of kinetochore-bound microtubule dynamics, in coordination with attachment via its own microtubule-binding activity, as well as via its interaction with the tip-tracker EB1 (end-binding protein 1).  相似文献   

12.
Apicomplexan parasites, such as the malaria-causing Plasmodium species, utilize a unique way of locomotion and host cell invasion. This substrate-dependent gliding motility requires rapid cycling of actin between the monomeric state and very short, unbranched filaments. Despite the crucial role of actin polymerization for the survival of the malaria parasite, the majority of Plasmodium cellular actin is present in the monomeric form. Plasmodium lacks most of the canonical actin nucleators, and formins are essentially the only candidates for this function in all Apicomplexa. The malaria parasite has two formins, containing conserved formin homology (FH) 2 and rudimentary FH1 domains. Here, we show that Plasmodium falciparum formin 1 associates with and nucleates both mammalian and Plasmodium actin filaments. Although Plasmodium profilin alone sequesters actin monomers, thus inhibiting polymerization, its monomer-sequestering activity does not compete with the nucleating activity of formin 1 at an equimolar profilin-actin ratio. We have determined solution structures of P. falciparum formin 1 FH2 domain both in the presence and absence of the lasso segment and the FH1 domain, and show that the lasso is required for the assembly of functional dimers.  相似文献   

13.
INF2 is an unusual formin protein in that it accelerates both actin polymerization and depolymerization, the latter through an actin filament-severing activity. Similar to other formins, INF2 possesses a dimeric formin homology 2 (FH2) domain that binds filament barbed ends and is critical for polymerization and depolymerization activities. In addition, INF2 binds actin monomers through its diaphanous autoregulatory domain (DAD) that resembles a Wiskott-Aldrich syndrome protein homology 2 (WH2) sequence C-terminal to the FH2 that participates in both polymerization and depolymerization. INF2-DAD is also predicted to participate in an autoinhibitory interaction with the N-terminal diaphanous inhibitory domain (DID). In this work, we show that actin monomer binding to the DAD of INF2 competes with the DID/DAD interaction, thereby activating actin polymerization. INF2 is autoinhibited in cells because mutation of a key DID residue results in constitutive INF2 activity. In contrast, purified full-length INF2 is constitutively active in biochemical actin polymerization assays containing only INF2 and actin monomers. Addition of proteins that compete with INF2-DAD for actin binding (profilin or the WH2 from Wiskott-Aldrich syndrome protein) decrease full-length INF2 activity while not significantly decreasing activity of an INF2 construct lacking the DID sequence. Profilin-mediated INF2 inhibition is relieved by an anti-N-terminal antibody for INF2 that blocks the DID/DAD interaction. These results suggest that free actin monomers can serve as INF2 activators by competing with the DID/DAD interaction. We also find that, in contrast to past results, the DID-containing N terminus of INF2 does not directly bind the Rho GTPase Cdc42.  相似文献   

14.
The completed genome from the model plant Arabidopsis thaliana reveals the presence of a diverse multigene family of formin-like sequences, comprising more than 20 isoforms. This review highlights recent findings from biochemical, cell biological and reverse-genetic analyses of this family of actin nucleation factors. Important advances in understanding cellular function suggest major roles for plant formins during cytokinesis and cell expansion. Biochemical studies on a subset of plant formins emphasize the need to examine molecular mechanisms outside of mammalian and yeast systems. Notably, a combination of solution-based assays for actin dynamics and timelapse, single-filament imaging with TIRFM provide evidence for the first non-processive formin (AtFH1) in eukaryotes. Despite these advances it remains difficult to generate a consensus view of plant formin activities and cellular functions. One limitation to summarizing formin properties relates to the enormous variability in domain organization among the plant formins. Generating homology-based predictions that depend on conserved domains outside of the FH1 and FH2 will be virtually impossible for plant formins. A second major drawback is the lack of facile techniques for examining dynamics of individual actin filaments within live plant cells. This constraint makes it extremely difficult to bridge the gap between biochemical characterization of particular formin and its specific cellular function. There is promise, however, that recent technical advances in engineering appropriate fluorescent markers and new fluoresence imaging techniques will soon allow the direct visualization of cortical actin filament dynamics. The emergence of other model systems for studying actin cytoskeleton in vivo, such as the moss Physcomitrella patens, may also enhance our knowledge of plant formins.  相似文献   

15.
T cell antigen receptor–proximal signaling components, Rho-family GTPases, and formin proteins DIA1 and FMNL1 have been implicated in centrosome reorientation to the immunological synapse of T lymphocytes. However, the role of these molecules in the reorientation process is not yet defined. Here we find that a subset of microtubules became rapidly stabilized and that their α-tubulin subunit posttranslationally detyrosinated after engagement of the T cell receptor. Formation of stabilized, detyrosinated microtubules required the formin INF2, which was also found to be essential for centrosome reorientation, but it occurred independently of T cell receptor–induced massive tyrosine phosphorylation. The FH2 domain, which was mapped as the INF2 region involved in centrosome repositioning, was able to mediate the formation of stable, detyrosinated microtubules and to restore centrosome translocation in DIA1-, FMNL1-, Rac1-, and Cdc42-deficient cells. Further experiments indicated that microtubule stabilization was required for centrosome polarization. Our work identifies INF2 and stable, detyrosinated microtubules as central players in centrosome reorientation in T cells.  相似文献   

16.
INF2 (inverted formin 2) is a formin protein with unusual biochemical characteristics. As with other formins, the formin homology 2 (FH2) domain of INF2 accelerates actin filament assembly and remains at the barbed end, modulating elongation. The unique feature of INF2 is its ability to sever filaments and enhance depolymerization, which requires the C-terminal region. Physiologically, INF2 acts in the secretory pathway and is mutated in two human diseases, focal and segmental glomerulosclerosis and Charcot-Marie-Tooth disease. In this study, we investigate the effects of mutating two FH2 residues found to be key in other formins: Ile-643 and Lys-792. Surprisingly, neither mutation abolishes barbed end binding, as judged by pyrene-actin and total internal reflection (TIRF) microscopy elongation assays. The I643A mutation causes tight capping of a subset of filaments, whereas K792A causes slow elongation of all filaments. The I643A mutation has a minor inhibitory effect on polymerization activity but causes almost complete abolition of severing and depolymerization activity. The K792A mutation has relatively small effects on polymerization, severing, and depolymerization. In cells, the K792A mutant causes actin accumulation around the endoplasmic reticulum to a similar extent as wild type, whereas the I643A mutant causes no measurable polymerization. The inability of I643A to induce actin polymerization in cells is explained by its inability to promote robust actin polymerization in the presence of capping protein. These results highlight an important point: it is dangerous to assume that mutation of conserved FH2 residues will have equivalent effects in all formins. The work also suggests that both mutations have effects on the mechanism of processive elongation.  相似文献   

17.
Coordination of microtubules and the actin cytoskeleton is important in several types of cell movement. mDia1 is a member of the formin-homology family of proteins and an effector of the small GTPase Rho. It contains the Rho-binding domain in its amino terminus and two distinct regions of formin homology, FH1 in the middle and FH2 in the carboxy terminus. Here we show that expression of mDia1(DeltaN3), an active mDia1 mutant containing the FH1 and FH2 regions without the Rho-binding domain, induces bipolar elongation of HeLa cells and aligns microtubules in parallel to F-actin bundles along the long axis of the cell. The cell elongation and microtubule alignment caused by this mutant is abolished by co-expression of an FH2-region fragment, and expression of mDia1(DeltaN3) containing point mutations in the FH2 region causes an increase in the amount of disorganized F-actin without cell elongation and microtubule alignment. These results indicate that mDia1 may coordinate microtubules and F-actin through its FH2 and FH1 regions, respectively.  相似文献   

18.
Formins are highly conserved heterogeneous family of proteins with several isoforms having significant contribution in multiple cellular functions. Formins play crucial role in remodelling of actin cytoskeleton and thus play important role in cell motility. Formins are also involved in many cellular activities like determining cell polarity, cytokinesis and morphogenesis. Formins are multi domain protein with characteristic homodimeric formin homology 2 (FH2) domain. It nucleates the actin filaments and its activity is regulated by the presence of characteristic formin homology 1 (FH1) domain. In higher mammals like human and mouse fifteen different formin isoforms are present. However the function and expression pattern of each and every formin in different adult tissues are not well characterized. Here we have found that multiple formins are expressing in each adult tissue of mouse, irrespective of their origin from the germ layer. Formins are also expressing from early stage of development to the adulthood in brain. The expression of many formins in a single tissue of adult mouse indicates that regulation of actin cytoskeleton dynamics by formins may be crucial for physiological processes like wound healing, tissue repairing, exocytosis, endocytosis, synapse formation and maintenance. Expression of FMNL2 and Fhdc1 are high in adult mouse brain as compare to embryonic stages. Higher expression of FMNL2 and Fhdc1 indicates that FMNL2 and Fhdc1 might be very important for the adult brain functions.  相似文献   

19.
Diaphanous-related formins (Drf) are activated by Rho GTP binding proteins and induce polymerization of unbranched actin filaments. They contain three formin homology domains. Evidence as to the effect of formins on actin polymerization were obtained using FH2/FH1 constructs of various length from different Drfs. Here we define the core FH2 domain as a proteolytically stable domain of approximately 338 residues. The monomeric FH2 domains from mDia1 and mDia3 inhibit polymerization of actin and can bind in a 1:1 complex with F-actin at micromolar concentrations. The X-ray structure analysis of the domain shows an elongated, crescent-shaped molecule consisting of three helical subdomains. The most highly conserved regions of the domain span a distance of 75 A and are both required for barbed-end inhibition. A construct containing an additional 72 residue linker has dramatically different properties: It oligomerizes and induces actin polymerization at subnanomolar concentration.  相似文献   

20.
A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号