首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most freshwater diversity is arguably located in networks of rivers and streams, but, in contrast to lacustrine systems riverine radiations, are largely understudied. The extensive rapids of the lower Congo River is one of the few river stretches inhabited by a locally endemic cichlid species flock as well as several species pairs, for which we provide evidence that they have radiated in situ. We use more that 2,000 AFLP markers as well as multilocus sequence datasets to reconstruct their origin, phylogenetic history, as well as the timing of colonization and speciation of two Lower Congo cichlid genera, Steatocranus and Nanochromis. Based on a representative taxon sampling and well resolved phylogenetic hypotheses we demonstrate that a high level of riverine diversity originated in the lower Congo within about 5 mya, which is concordant with age estimates for the hydrological origin of the modern lower Congo River. A spatial genetic structure is present in all widely distributed lineages corresponding to a trisection of the lower Congo River into major biogeographic areas, each with locally endemic species assemblages. With the present study, we provide a phylogenetic framework for a complex system that may serve as a link between African riverine cichlid diversity and the megadiverse cichlid radiations of the East African lakes. Beyond this we give for the first time a biologically estimated age for the origin of the lower Congo River rapids, one of the most extreme freshwater habitats on earth.  相似文献   

2.
Lake Tanganyika, the oldest of the East African Great Lakes, harbors the ecologically, morphologically, and behaviorally most complex of all assemblages of cichlid fishes, consisting of about 200 described species. The evolutionary old age of the cichlid assemblage, its extreme degree of morphological differentiation, the lack of species with intermediate morphologies, and the rapidity of lineage formation have made evolutionary reconstruction difficult. The number and origin of seeding lineages, particularly the possible contribution of riverine haplochromine cichlids to endemic lacustrine lineages, remains unclear. Our phylogenetic analyses, based on mitochondrial DNA sequences of three gene segments of 49 species (25% of all described species, up to 2,400 bp each), yield robust phylogenies that provide new insights into the Lake Tanganyika adaptive radiation as well as into the origin of the Central- and East-African haplochromine faunas. Our data suggest that eight ancient African lineages may have seeded the Tanganyikan cichlid radiation. One of these seeding lineages, probably comprising substrate spawning Lamprologus-like species, diversified into six lineages that evolved mouthbrooding during the initial stage of the radiation. All analyzed haplochromines from surrounding rivers and lakes seem to have evolved within the radiating Tanganyikan lineages. Thus, our findings contradict the current hypothesis that ancestral riverine haplochromines colonized Lake Tanganyika to give rise to at least part of its spectacular endemic cichlid species assemblage. Instead, the early phases of the Tanganyikan radiation affected Central and East African rivers and lakes. The haplochromines may have evolved in the Tanganyikan basin before the lake became a hydrologically and ecologically closed system and then secondarily colonized surrounding rivers. Apparently, therefore, the current diversity of Central and East African haplochromines represents a relatively young and polyphyletic fauna that evolved from or in parallel to lineages now endemic to Lake Tanganyika.  相似文献   

3.
A long history of research focused on the East Africa cichlid radiations (EAR) revealed discrepancies between mtDNA and nuclear phylogenies, suggesting that interspecific hybridisation may have been significant during the radiation of these fishes. The approximately 250 cichlid species of Lake Tanganyika have their roots in a monophyletic African cichlid assemblage, but controversies remain about the precise phylogenetic origin and placement of different lineages and consequently about L. Tanganyika colonization scenarios. 3312 AFLP loci and the mitochondrial ND2 gene were genotyped for 91 species representing almost all major lacustrine and riverine haplotilapiine east African cichlid lineages with a focus on L. Tanganyika endemics. Explicitly testing for the possibility of ancient hybridisation events, a comprehensive phylogenetic network hypothesis is proposed for the origin and diversification of L. Tanganyika cichlids. Inference of discordant phylogenetic signal strongly suggests that the genomes of two endemic L. Tanganyika tribes, Eretmodini and Tropheini, are composed of an ancient mixture of riverine and lacustrine lineages. For the first time a strong monophyly signal of all non-haplochromine mouthbrooding species endemic to L. Tanganyika (“ancient mouthbrooders”) was detected. Further, in the genomes of early diverging L. Tanganyika endemics Trematocarini, Bathybatini, Hemibatini and Boulengerochromis genetic components of other lineages belonging to the East African Radiation appear to be present. In combination with recent palaeo-geological results showing that tectonic activity in the L. Tanganyika region resulted in highly dynamic and heterogeneous landscape evolution over the Neogene and Pleistocene, the novel phylogenetic data render a single lacustrine basin as the geographical cradle of the endemic L. Tanganyika cichlid lineages unlikely. Instead a scenario of a pre-rift origin of several independent L. Tanganyika precursor lineages which diversified in ancient rivers and precursor lakes and then amalgamated in the extant L. Tanganyika basin is put forward as an alternative: the ''melting pot Tanganyika'' hypothesis.  相似文献   

4.
Haplochromine cichlids form the most species-rich lineage of cichlid fishes that both colonized almost all river systems in Africa and radiated to species flocks in several East African lakes. The enormous diversity of lakes is contrasted by a relatively poor albeit biogeographically clearly structured species diversity in rivers. The present study analyzed the genetic structure and phylogeographic history of species and populations of the genus Pseudocrenilabrus in Zambian rivers that span two major African drainage systems, the Congo- and the Zambezi-system. The mtDNA phylogeny identifies four major lineages, three of which occur in the Congo-system and one in the Zambezi system. Two of the Congo-clades (Lake Mweru and Lunzua River) comprise distinct albeit yet undescribed species, while the fish of the third Congo-drainage clade (Chambeshi River and Bangweulu swamps), together with the fish of the Zambezi clade (Zambezi and Kafue River) are assigned to Pseudocrenilabrus philander. Concerning the intraspecific genetic diversity observed in the sampled rivers, most populations are highly uniform in comparison to lacustrine haplochromines, suggesting severe founder effects and/or bottlenecking during their history. Two bursts of diversification are reflected in the structure of the linearized tree. The first locates at about 3.9% mean sequence divergence and points to an almost simultaneous colonization of the sampled river systems. Subsequent regional diversification (with about 1% mean sequence divergence) occurred contemporaneously within the Kafue River and the Zambezi River. The clear-cut genetic biogeographic structure points to the dominance of geographic speciation in this lineage of riverine cichlid fishes, contrasting the importance of in situ diversification observed in lake cichlids.  相似文献   

5.
Forty-nine populations of brook charr (Salvelinus fontinalis) from Algonquin Park lakes and rivers were analysed for mitochondrial DNA variation. Haplotypic distributions of wild fish in the Algonquin Park region of Ontario, Canada, predominantly reflect postglacial dispersal patterns into the region in spite of substantial hatchery plantings. Two major refugial groupings colonized this region. Northern and eastern watersheds (Amable du Fond, Bonnechere, and northern Petawawa), were colonized primarily by haplotype 1 fish (B1 phylogenetic assemblage), while Oxtongue River, southern Petawawa, and York River populations were colonized predominately by fish from the B2 and A mtDNA phylogenetic assemblages. Fish with haplotypes in the A and B2 phylogenetic assemblages are common in the Lake Huron drainage. All watersheds in the Park drain into the Ottawa River, except the Oxtongue drainage (part of the Lake Huron watershed). This suggests that early glacial outflows south of the Algonquin Park region (Kirkfield-Trent) may have been colonized by fish that initially invaded ‘Ontario island’ (south-western Ontario), while fish which invaded northern Algonquin Park were derived from a different refugial grouping(s) which may have involved colonization both up the Ottawa River drainage, and/or from a more westerly (Mississippian) refugial grouping. A majority of the populations in Algonquin Park have been planted with hatchery reared brook charr since the 1940s. The Hills Lake or ‘Domestic’ strain was used almost exclusively for these plantings. Comparisons of mtDNA haplotypic distributions in hatchery and wild fish suggests that hatchery females had minimal spawning success and/or their progeny had poor survivorship in the wild.  相似文献   

6.
The Haplochromini are by far the most species-rich cichlid fish tribe that originated along with the so-called primary radiation of the Lake Tanganyika cichlid species flock, i.e. at the same time during which the majority of the endemic Lake Tanganyika cichlid tribes emerged. Unlike the other tribes, the haplochromines are not restricted to Lake Tanganyika but distributed throughout Africa, except for the northwestern part of the continent. Haplochromine cichlids seeded the adaptive radiation of cichlid fishes in Lakes Malawi, Kivu, Victoria, Turkana, as well as in the now extinct paleo-Lake Makgadikgadi. Here we present a comprehensive phylogenetic and phylogeographic analysis of haplochromine cichlids that is based upon DNA sequences of two mitochondrial gene segments of riverine taxa covering all major African biogeographic regions where haplochromines are found. Our analysis revealed that six lineages of haplochromines originated within a short period of time, about 5.3-4.4 MYA. These haplochromine lineages show a highly complex phylogeographic pattern, probably severely influenced by climate- and/or geology-induced changes of the environment, with river capture events most likely playing an important role for species dispersal.  相似文献   

7.
Knowledge on faunal diversification in African rainforests remains scarce. We used phylogeography to assess (i) the role of Pleistocene climatic oscillations in the diversification of the African common pangolin (Manis tricuspis) and (ii) the utility of our multilocus approach for taxonomic delineation and trade tracing of this heavily poached species. We sequenced 101 individuals for two mitochondrial DNA (mtDNA), two nuclear DNA and one Y‐borne gene fragments (totalizing 2602 bp). We used a time‐calibrated, Bayesian inference phylogenetic framework and conducted character‐based, genetic and phylogenetic delineation of species hypotheses within African common pangolins. We identified six geographic lineages partitioned into western Africa, Ghana, the Dahomey Gap, western central Africa, Gabon and central Africa, all diverging during the Middle to Late Pleistocene. MtDNA (cytochrome b + control region) was the sole locus to provide diagnostic characters for each of the six lineages. Tree‐based Bayesian delimitation methods using single‐ and multilocus approaches gave high support for ‘species’ level recognition of the six African common pangolin lineages. Although the diversification of African common pangolins occurred during Pleistocene cyclical glaciations, causative correlation with traditional rainforest refugia and riverine barriers in Africa was not straightforward. We conclude on the existence of six cryptic lineages within African common pangolins, which might be of major relevance for future conservation strategies. The high discriminative power of the mtDNA markers used in this study should allow an efficient molecular tracing of the regional origin of African common pangolin seizures.  相似文献   

8.
The distribution of the diploid and triploid forms and the correspondence between ploidy and mitochondrial DNA (mtDNA) phylogenetic lineages of the silver crucian carp have been studied in Far Eastern water bodies and the Syr Darya River. Both diploid and triploid forms have been found in large river systems (the Amur, Suifun, Tumangan, and Syr Darya river basins). Only the diploid form has been detected in lakes of Bol’shoi Pelis Island (Peter the Great Bay of the Sea of Japan), Sakhalin Island, and the Kamchatka River basin (the Kamchatka Peninsula). It has been confirmed that there are two mtDNA phylogroups in the silver crucian carp in the area studied. Both mtDNA phylogenetic lineages are present in the Suifun and Tumangan river basins. Only one mtDNA phylogroup (characteristic of the gynogenetic form) has been detected in two samples from the Amur River and in the Syr Darya population. The other mtDNA phylogroup is predominant in insular populations and in Kamchatka. The gynogenetic form carries only mtDNA phylogroup I, whereas both phylogroups have been found in diploid bisexual fish. The existence of only two mtDNA phylogroups substantially differing from each other indicates that the gynogenetic form has emerged from the diploid form only once and evolved independently for a long time after that. The absence of haplotypes transitional between the two mtDNA phylogroups suggests that the secondary contact between the gynogenetic and bisexual forms in continental populations occurred within recent historical time. The obtained data confirm that genetic (though asymmetric) exchange between the two forms is possible, which explains the high morphological and, probably, genetic similarity between them.  相似文献   

9.
Phylogenetic analyses based on mitochondrial (mt) DNA have indicated that the cichlid species flock of the Lake Victoria region is derived from a single ancestral species found in East African rivers, closely related to the ancestor of the Lake Malawi cichlid species flock. The Lake Victoria flock contains ten times less mtDNA variation than the Lake Malawi radiation, consistent with current estimates of the ages of the lakes. We present results of a phylogenetic investigation using nuclear (amplified fragment length polymorphism) markers and a wider coverage of riverine haplochromines. We demonstrate that the Lake Victoria-Edward flock is derived from the morphologically and ecologically diverse cichlid genus Thoracochromis from the Congo and Nile, rather than from the phenotypically conservative East African Astatotilapia. This implies that the ability to express much of the morphological diversity found in the species flock may by far pre-date the origin of the flock. Our data indicate that the nuclear diversity of the Lake Victoria-Edward species flock is similar to that of the Lake Malawi flock, indicating that the genetic diversity is considerably older than the 15 000 years that have passed since the lake began to refill. Most of this variation is manifested in trans-species polymorphisms, indicating very recent cladogenesis from a genetically very diverse founder stock. Our data do not confirm strict monophyly of either of the species flocks, but raise the possibility that these flocks have arisen from hybrid swarms.  相似文献   

10.
The distribution of the diploid and triploid forms and the correspondence between ploidy and mitochondrial DNA (mtDNA) phylogenetic lineages of the silver crucian carp have been studied in Far Eastern water bodies and the Syr Darya River. Both diploid and triploid forms have been found in large river systems (the Amur, Suifun, Tumangan, and Syr Darya river basins). Only the diploid form has been detected in lakes of Bol'shoi Pelis Island (Peter the Great Bay of the Sea of Japan), Sakhalin Island, and the Kamchatka River basin (the Kamchatka Peninsula). It has been confirmed that there are two mtDNA phylogroups in the silver crucian carp in the area studied. Both mtDNA phylogenetic lineages are present in the Suifun and Tumangan river basins. Only one mtDNA phylogroup (characteristic of the gynogenetic form) has been detected in two samples from the Amur River and in the Syr Darya population. The other mtDNA phylogroup is predominant in insular populations and in Kamchatka. The gynogenetic form carries only mtDNA phylogroup I, whereas both phylogroups have been found in diploid bisexual fish. The existence of only two mtDNA phylogroups substantially differing from each other indicates that the gynogenetic form has emerged from the diploid form only once and evolved independently for a long time after that. The absence of haplotypes transitional between the two mtDNA phylogroups suggests that the secondary contact between the gynogenetic and bisexual forms in continental populations occurred within recent historical time. The obtained data confirm that genetic (though asymmetric) exchange between the two forms is possible, which explains the high morphological and, probably, genetic similarity between them.  相似文献   

11.
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.  相似文献   

12.
The phylogeographic structure of the monotypic endemic southern African angulate tortoise Chersina angulata was investigated throughout its distribution with the use of partial sequences from three mtDNA loci (COI, cyt b and ND4). Phylogeographic and phylogenetic structuring obtained for the three mtDNA markers were highly congruent and suggested the presence of two genetically distinct, reciprocally monophyletic evolutionary lineages. Group one contained two subclades with haplotypes from the north-western Cape and south-western Cape, respectively, while haplotypes from the southern Cape comprised group two. The two major clades were separated by nine and eight mutational steps for COI and ND4, respectively. Of the three mtDNA gene regions examined, the ND4 partial sequence contained the most phylogenetic signal. Haplotype diversity was generally low and we recovered 34 haplotypes for the 125 animals sequenced for the ND4 subunit. Nested clade analyses performed on the variable ND4 partial sequences suggested the presence of two major refugial areas for this species. The demographic history of the taxon was characterised by range expansion and prolonged historical fragmentation. Divergence time estimates suggest that the temporal and spatial distribution of the taxon was sculpted by changes in temperature and rainfall patterns since the late Miocene. Corroborative evidence from other reptiles is also suggestive of a late Miocene divergence, indicating that this was a major epoch for cladogenesis in southern Africa. Apart from the genetic differences between the two major clades, we also note morphometric and behavioural differences, alluding to the presence of two putative taxa nested within C. angulata.  相似文献   

13.
Water level fluctuations are important modulators of speciation processes in tropical lakes, in that they temporarily form or break down barriers to gene flow among adjacent populations and/or incipient species. Time estimates of the most recent major lowstands of the three African Great Lakes are thus crucial to infer the relative timescales of explosive speciation events in cichlid species flocks. Our approach combines geological evidence with genetic divergence data of cichlid fishes from the three Great East African Lakes derived from the fastest-evolving mtDNA segment. Thereby, we show for each of the three lakes that individuals sampled from several populations which are currently isolated by long geographic distances and/or deep water form clusters of equally closely related haplotypes. The distribution of identical or equally closely related haplotypes in a lake basin allows delineation of the extent of lake level fluctuations. Our data suggest that the same climatic phenomenon synchronized the onset of genetic divergence of lineages in all three species flocks, such that their most recent evolutionary history seems to be linked to the same external modulators of adaptive radiation. A calibration of the molecular clock of the control region was elaborated by gauging the age of the Lake Malawi species flock through the divergence among the utaka-cichlid and the mbuna-cichlid lineages to minimally 570,000 years and maximally 1 Myr. This suggests that the low-lake-level period which established the observed patterns of genetic relatedness dates back less than 57,000 years, probably even to 17,000-12,400 years ago, when Lake Victoria dried up and Lakes Malawi and Tanganyika were also low. A rapid rise of all three lakes about 11,000 years ago established the large-scale population subdivisions observed today. Over that period of time, a multitude of species originated in Lakes Malawi and Victoria with an impressive degree of morphological and ecological differentiation, whereas the Tanganyikan taxa that were exposed to the same habitat changes hardly diverged ecologically and morphologically. Our findings also show that patterns of genetic divergences of stenotopic organisms provide valuable feedback on geological and sedimentological time estimates for lake level changes.  相似文献   

14.
Comparative analysis of personal sequence data for the mtDNA control region (926 to 928 bp) from eight-barbel loaches inhabiting eight localities in the Amur River basin (4) and the Sea of Japan (4) and the GeneBank/NCBI data for the Lefua individuals from the other regions of the world showed that eight-barbel loaches from Primorskii krai water basins were marked by a specific group of mtDNA haplotypes. This finding is considered as supporting the species status of L. pleskei. Genetic distances within L. pleskei are small (on average 0.355) and close to those within L. nikkonis (on average 0.48%). The distances between this species pair are the least (on average 2.15%) among all other pairs compared. In MP, ML, and Bayesian trees, L. pleskei and L. nikkonis haplotypes formed a common clade with high statistically significant support. In all tree variants, L. costata mtDNA haplotypes were located out of the group of interest. A clade consisting of highly diverged lineages of Lefua sp. and L. echigonia haplotypes occupied even more independent position. The mtDNA haplotypes of L. pleskei and L. costata from the Amur River basin were evolutionary young and derived from the haplotypes found in these species from the Sea of Japan (L. pleskei) or the Yellow Sea (L. costata) basins. It is thereby suggested that both species rather recently migrated into the Amur River system. According to the molecular clock data, basal diversification of the eight-barbel loach lineages took place at the end of middle Miocene (about 11 to 12 Myr ago), while divergence of L. pleskei and L. costata ancestral forms probably occurred approximately, 5 Myr ago. Since all main lineages of eight-barbel loaches were found in the Sea of Japan basin (continental coastline and the islands), the divergence order and dispersal patterns of the Lafua species might have been largely determined by the geological development pattern of this water body and the adjacent territories.  相似文献   

15.
Zambian rivers belong to two major drainages: the Luapula-Congo and the Zambezi River system. Tectonic activity repeatedly altered drainage systems in Africa, so that current fish faunas can only be understood in the context of historic drainage capture events. We use phylogenetic relationships of one widespread lineage of haplochromine cichlids, the serranochromines, to trace their biogeographic expansion and diversification in Zambia. The mitochondrial DNA phylogeny suggests five ancient clades, and their common ancestor was likely to have invaded from the Lower Congo River. The branching intervals in the linearized tree analysis suggest three major cladogenesis events and two periods of faunal exchange. The five clades originating in the Congo River drainage diversified further; one stayed in the Congo drainage, one diversified in the Zambezi system only, while the three clades of mixed distribution underwent diversification in the Zambezi system, to re-enter the Congo drainage very recently, as indicated by sometimes zero mutation differences among taxa from different drainages. Our hypothesis is consistent with the suggested radiation in the extinct Lake palaeo-Makgadikgadi, so that we propose that the Zambian serranochromine fauna in part represents survivors of the extinct lacustrine flock plus several novel species that originated in situ.  相似文献   

16.
Mitochondrial DNA (mtDNA) nucleotide sequences of African origin are found in various European populations at a low frequency (on average, less than 1%). Data on mtDNA variation in Eurasian and African populations have been analyzed, and African mtDNA lineages have been found in Europeans. It has been demonstrated that, despite the high diversity of mtDNA haplotypes of African origin in Europeans, few monophyletic clusters of African lineages are characterized by long-term diversity formed in Europe. Only two such mtDNA clusters (from haplogroups L1b and L3b) have been found, their evolutionary age not exceeding 6500 years. European and African populations have been compared with respect to the frequency distributions of the alleles of autosomal microsatellite loci found in Russian carriers of African mtDNA haplotypes. It has been demonstrated that alleles typical of Europeans are characteristic of the autosomal genotypes of these Russian individuals.  相似文献   

17.
We investigated the phylogenetic relationships among the three presently recognized subspecies of the tadpole shrimp, Triops cancriformis , using mitochondrial 16S and 12S rDNA sequences. Our results indicate that the taxon is divided into two distinct lineages. One lineage is formed of T. c. cancriformis populations and samples from northern Spain that had been classified as T. c. simplex in the most recent literature. The second lineage comprises all populations of T. c. mauritanicus and northern African populations of T. c. simplex . These two main lineages separated 2.3 to 8.9 million years ago, based on the range of inferred molecular clocks recognized for crustacean mtDNA sequence divergence. Percentages of divergence are in the range reported for recognized species in other notostracan lineages and we therefore propose to recognize them as two species, Triops cancriformis and Triops mauritanicus . The latter would comprise two subspecies in northern Africa, one consisting of the Moroccan populations of the former T. c. mauritanicus , the other comprising the African populations of the former T. c. simplex . It also includes three as-yet unnamed lineages. A comparison of morphological characters with the molecular data revealed that the former T. c. simplex cannot be reliably separated from T. c. cancriformis , using morphological characters that have hitherto been used to distinguish among subspecies of T. cancriformis . Our investigation is the first to demonstrate the presence of T. c. cancriformis in Africa (Tunisia). The genetic haplotypes of these populations are identical with haplotypes also occurring in Central and Western Europe, as well as in Sicily. Therefore, we hypothesize that the African populations of T. c. cancriformis represent a result of repeated long-distance dispersal across the Mediterranean Sea.  相似文献   

18.
Phylogeographic analyses can yield valuable insights into the geographic and historical contexts of contact and hybridization between taxa. Two species of char (Salmonidae), Dolly Varden (Salvelinus malma) and bull trout (S. confluentus) have largely parapatric distributions in watersheds of northwestern North America. They are, however, sympatric in several localities and hybridization and some introgression occurs across a broad area of contact. We conducted a comparative phylogenetic analysis of Dolly Varden and bull trout to gain a historical perspective of hybridization between these species and to test for footprints of historical introgression. We resolved two major Dolly Varden mitochondrial DNA (mtDNA) clades (with 1.4-2.2% sequence divergence between haplotypes) that had different geographical distributions. Clade N is distributed across most of the range of Dolly Varden, from southern British Columbia through to the Kuril Islands in Asia. Clade S had a much more limited distribution, from Washington state, at the southern limit of the Dolly Varden range, to the middle of Vancouver Island. The distribution and inferred ages of the mtDNA clades suggested that Dolly Varden survived the Wisconsinan glaciation in a previously unsuspected refuge south of the ice sheet, and that Dolly Varden and bull trout were probably in continuous contact over most of the last 100,000 years. When bull trout were included in the phylogenetic analysis, however, the mtDNA of neither species was monophyletic: Clade S Dolly Varden clustered within the bull trout mtDNA clade. This pattern was discordant with two nuclear phylogenies produced (growth hormone 2 and rRNA internal transcribed sequence 1), in which Dolly Varden and bull trout were reciprocally monophyletic. This discordance between mtDNA- and nDNA-based phylogenies indicates that historical introgression of bull trout mtDNA into Dolly Varden occurred. Percent sequence divergence within these introgressed Dolly Varden (clade S) was 0.2-0.6%, implying that the introgression occurred prior to the most recent glaciation. Our analysis and other evidence of contact between divergent lineages in northwestern North America strongly suggests that the area may be the site of previously unsuspected suture zones of aquatic biotas.  相似文献   

19.
We describe the phylogeographic structure of 28 Chinese populations of the cyprinid Opsariichthys bidens across three main Chinese river drainages. Our study is based on the phylogenetic analysis of the complete mitochondrial cytochrome b gene (1140 bp). We combined this analysis with population processes inferred from nested clade analysis (NCA) and mismatch distributions. Both analyses showed that Chinese O. bidens consists of five mtDNA lineages (Opsariichthys 1-5) with high genetic divergence among them. Molecular divergences (TrN+G) higher than 20% among the Opsariichthys 1-5 mtDNA lineages suggest a taxonomic underestimation at the species level. About 92% of the genetic variance among samples was explained by differences among Opsariichthys mtDNA lineages. Drainage-restricted haplotypes with high frequencies and moderate nucleotide diversity show that Opsariichthys populations have evolved independently. NCA results were congruent with the phylogeny, and unimodal mismatch distributions with negative Tajima's D values suggest population expansions in some Opsariichthys lineages. The phylogeographic structure of the Opsariichthys 1-5 mtDNA lineages appears to be related to their long-term interruption of gene flow (theta(ST)>0.97). Our results suggested that fragmentation of ancestral ranges might have caused Opsariichthys diversification in Chinese waters. However, current distribution of common haplotypes across the Yangtze and Pearl drainages suggests a recent river connection that could have favoured gene flow across drainages. Overall, the results indicated that the richness of current Asian widespread species might have been underestimated, and that the cyprinid populations of O. bidens in the Yangtze, Pearl and Hai He drainages may correspond to five species.  相似文献   

20.
In the present study, to further understand the phylogenetic relationships among the Eurasian badgers (Meles, Mustelidae, Carnivora), which are distributed widely in the Palearctic, partial sequences of the mitochondrial DNA (mtDNA) control region (539-545 base-pairs) as a maternal genetic marker, and the sex-determining region on the Y-chromosome gene (SRY: 1052-1058 base-pairs), as a paternal genetic marker, were examined. The present study revealed ten SRY haplotypes from 47 males of 112 individuals of the Eurasian Continent and Japan. In addition, 39 mtDNA haplotypes were identified from those animals. From the phylogeography of both the uniparentally inherited genes, four lineages were recognized as Japanese, eastern Eurasian, Caucasian, and western Eurasian. The distribution patterns of the mtDNA lineages showed the existence of a sympatric zone between the eastern and western Eurasian lineages around the Volga River in western Russia. Furthermore, the present study suggested that in the Japanese badgers, the larger genetic differentiation of the Shikoku population was attributable to geographic history in the Japanese islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号