首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid (AA) and the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonylethanolamide to prostaglandins, prostaglandin glyceryl esters, and prostaglandin ethanolamides, respectively. A structural homodimer, COX-2 acts as a conformational heterodimer with a catalytic and an allosteric monomer. Prior studies have demonstrated substrate-selective negative allosteric regulation of 2-AG oxygenation. Here we describe AM-8138 (13(S)-methylarachidonic acid), a substrate-selective allosteric potentiator that augments 2-AG oxygenation by up to 3.5-fold with no effect on AA oxygenation. In the crystal structure of an AM-8138·COX-2 complex, AM-8138 adopts a conformation similar to the unproductive conformation of AA in the substrate binding site. Kinetic analysis suggests that binding of AM-8138 to the allosteric monomer of COX-2 increases 2-AG oxygenation by increasing kcat and preventing inhibitory binding of 2-AG. AM-8138 restored the activity of COX-2 mutants that exhibited very poor 2-AG oxygenating activity and increased the activity of COX-1 toward 2-AG. Competition of AM-8138 for the allosteric site prevented the inhibition of COX-2-dependent 2-AG oxygenation by substrate-selective inhibitors and blocked the inhibition of AA or 2-AG oxygenation by nonselective time-dependent inhibitors. AM-8138 selectively enhanced 2-AG oxygenation in intact RAW264.7 macrophage-like cells. Thus, AM-8138 is an important new tool compound for the exploration of allosteric modulation of COX enzymes and their role in endocannabinoid metabolism.  相似文献   

2.
The cyclooxygenases (COX-1 and COX-2) oxygenate arachidonic acid (AA) in the committed step of prostaglandin biogenesis. Substitutions of I434V, H513R, and I523V constitute the only differences in residues lining the cyclooxygenase channel between COX-1 and COX-2. These changes create a hydrophobic pocket in COX-2, with Arg-513 located at the base of the pocket, which has been exploited in the design of COX-2-selective inhibitors. Previous studies have shown that COX-2, but not COX-1, can oxygenate endocannabinoid substrates, including 2-arachidonoyl glycerol (2-AG). To investigate the isoform-specific structural basis of endocannabinoid binding to COX-2, we determined the crystal structure of the 2-AG isomer 1-arachidonoyl glycerol (1-AG) in complex with wild type and R513H murine (mu) COX-2 to 2.2 and 2.35 Å, respectively, and R513H muCOX-2 in complex with AA to 2.45 Å resolution. The 2,3-dihydroxypropyl moiety of 1-AG binds near the opening of the cyclooxygenase channel in the space vacated by the movement of the Leu-531 side chain, validating our previous hypothesis implicating the flexibility of the Leu-531 side chain as a determinant for the ability of COX-2 to oxygenate endocannabinoid substrates. Functional analyses carried out to compliment our structural findings indicated that Y355F and R513H muCOX-2 constructs had no effect on the oxygenation of 1-AG and 2-AG, whereas substitutions that resulted in a shortened side chain for Leu-531 had only modest effects. Both AA and 1-AG bind to R513H muCOX-2 in conformations similar to those observed in the co-crystal structures of these substrates with wild type enzyme.  相似文献   

3.
Prostaglandin-endoperoxide H synthases (PGHSs) have a cyclooxygenase that forms prostaglandin (PG) G2 from arachidonic acid (AA) plus oxygen and a peroxidase that reduces the PGG2 to PGH2. The peroxidase activates the cyclooxygenase. This involves an initial oxidation of the peroxidase heme group by hydroperoxide, followed by oxidation of Tyr385 to a tyrosyl radical within the cyclooxygenase site. His386 of PGHS-1 is not formally part of either active site, but lies in an extended helix between Tyr385, which protrudes into the cyclooxygenase site, and His388, the proximal ligand of the peroxidase heme. When His386 was substituted with alanine in PGHS-1, the mutant retained <2.5% of the native peroxidase activity, but >20% of the native cyclooxygenase activity. However, peroxidase activity could be restored (10-30%) by treating H386A PGHS-1 with cyclooxygenase inhibitors or AA, but not with linoleic acid; in contrast, mere occupancy of the cyclooxygenase site of native PGHS-1 had no effect on peroxidase activity. Heme titrations indicated that H386A PGHS-1 binds heme less tightly than does native PGHS-1. The low peroxidase activity and decreased affinity for heme of H386A PGHS-1 imply that His386 helps optimize heme binding. Molecular dynamic simulations suggest that this is accomplished in part by a hydrogen bond between the heme D-ring propionate and the N-delta of Asn382 of the extended helix. The structure of the extended helix is, in turn, strongly supported by stable hydrogen bonding between the N-delta of His386 and the backbone carbonyl oxygens of Asn382 and Gln383. We speculate that the binding of cyclooxygenase inhibitors or AA to the cyclooxygenase site of ovine H386A PGHS-1 reopens the constriction in the cyclooxygenase site between the extended helix and a helix containing Gly526 and Ser530 and restores native-like structure to the extended helix. Being less bulky than AA, linoleic acid is apparently unable to reopen this constriction.  相似文献   

4.
The cannabinoid CB2 receptor, which is activated by the endocannabinoid 2-arachidonoyl-glycerol (2-AG), protects striatal neurons from apoptotic death caused by the local administration of malonate, a rat model of Huntington''s disease (HD). In the present study, we investigated whether endocannabinoids provide tonic neuroprotection in this HD model, by examining the effect of O-3841, an inhibitor of diacylglycerol lipases, the enzymes that catalyse 2-AG biosynthesis, and JZL184 or OMDM169, two inhibitors of 2-AG inactivation by monoacylglycerol lipase (MAGL). The inhibitors were injected in rats with the striatum lesioned with malonate, and several biochemical and morphological parameters were measured in this brain area. Similar experiments were also conducted in vitro in cultured M-213 cells, which have the phenotypic characteristics of striatal neurons. O-3841 produced a significant reduction in the striatal levels of 2-AG in animals lesioned with malonate. However, surprisingly, the inhibitor attenuated malonate-induced GABA and BDNF deficiencies and the reduction in Nissl staining, as well as the increase in GFAP immunostaining. In contrast, JZL184 exacerbated malonate-induced striatal damage. Cyclooxygenase-2 (COX-2) was induced in the striatum 24 h after the lesion simultaneously with other pro-inflammatory responses. The COX-2-derived 2-AG metabolite, prostaglandin E2 glyceryl ester (PGE2-G), exacerbated neurotoxicity, and this effect was antagonized by the blockade of PGE2-G action with AGN220675. In M-213 cells exposed to malonate, in which COX-2 was also upregulated, JZL184 worsened neurotoxicity, and this effect was attenuated by the COX-2 inhibitor celecoxib or AGN220675. OMDM169 also worsened neurotoxicity and produced measurable levels of PGE2-G. In conclusion, the inhibition of 2-AG biosynthesis is neuroprotective in rats lesioned with malonate, possibly through the counteraction of the formation of pro-neuroinflammatory PGE2-G, formed from COX-2-mediated oxygenation of 2-AG. Accordingly, MAGL inhibition or the administration of PGE2-G aggravates the malonate toxicity.  相似文献   

5.
Cyclooxygenases (COX) play an important role in lipid signaling by oxygenating arachidonic acid to endoperoxide precursors of prostaglandins and thromboxane. Two cyclooxygenases exist which differ in tissue distribution and regulation but otherwise carry out identical chemical functions. The neutral arachidonate derivative, 2-arachidonylglycerol (2-AG), is one of two described endocannabinoids and appears to be a ligand for both the central (CB1) and peripheral (CB2) cannabinoid receptors. Here we report that 2-AG is a substrate for COX-2 and that it is metabolized as effectively as arachidonic acid. COX-2-mediated 2-AG oxygenation provides the novel lipid, prostaglandin H(2) glycerol ester (PGH(2)-G), in vitro and in cultured macrophages. PGH(2)-G produced by macrophages is a substrate for cellular PGD synthase, affording PGD(2)-G. Pharmacological studies reveal that macrophage production of PGD(2)-G from endogenous sources of 2-AG is calcium-dependent and mediated by diacylglycerol lipase and COX-2. These results identify a distinct function for COX-2 in endocannabinoid metabolism and in the generation of a new family of prostaglandins derived from diacylglycerol and 2-AG.  相似文献   

6.
Microsomal epoxide hydrolase (EPHX1, EC 3.3.2.9) is a highly abundant α/β-hydrolase enzyme that is known for its catalytical epoxide hydrolase activity. A wide range of EPHX1 functions have been demonstrated including xenobiotic metabolism; however, characterization of its endogenous substrates is limited. In this study, we present evidence that EPHX1 metabolizes the abundant endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid (AA) and glycerol. The EPHX1 metabolism of 2-AG was demonstrated using commercially available EPHX1 microsomes as well as PC-3 cells overexpressing EPHX1. Conversely, EPHX1 siRNA markedly reduced the EPHX1 expression and 2-AG metabolism in HepG2 cells and LNCaP cells. A selective EPHX1 inhibitor, 10-hydroxystearamide, inhibited 2-AG metabolism and hydrolysis of a well-known EPHX1 substrate, cis-stilbene oxide. Among the inhibitors studied, a serine hydrolase inhibitor, methoxy-arachidonyl fluorophosphate, was the most potent inhibitor of 2-AG metabolism by EPHX1 microsomes. These results demonstrate that 2-AG is an endogenous substrate for EPHX1, a potential role of EPHX1 in the endocannabinoid signaling and a new AA biosynthetic pathway.  相似文献   

7.
Prostaglandin H(2) synthesis by prostaglandin endoperoxide synthase (PGHS) requires the heme-dependent activation of the protein's cyclooxygenase activity. The PGHS heme participates in cyclooxygenase activation by accepting an electron from Tyr385 located in the cyclooxygenase active site. Two mechanisms have been proposed for the oxidation of Tyr385 by the heme iron: (1) ferric enzyme oxidizes a hydroperoxide activator and the incipient peroxyl radical oxidizes Tyr385, or (2) ferric enzyme reduces a hydroperoxide activator and the incipient ferryl-oxo heme oxidizes Tyr385. The participation of ferrous PGHS in cyclooxygenase activation was evaluated by determining the reduction potential of PGHS-2. Under all conditions tested, this potential (<-135 mV) was well below that required for reactions leading to cyclooxygenase activation. Substitution of the proximal heme ligand, His388, with tyrosine was used as a mechanistic probe of cyclooxygenase activation. His388Tyr PGHS-2, expressed in insect cells and purified to homogeneity, retained cyclooxygenase activity but its peroxidase activity was diminished more than 300-fold. Concordant with this poor peroxidase activity, an extensive lag in His388Tyr cyclooxygenase activity was observed. Addition of hydroperoxides resulted in a concentration-dependent decrease in lag time consistent with each peroxide's ability to act as a His388Tyr peroxidase substrate. However, hydroperoxide treatment had no effect on the maximal rate of arachidonate oxygenation. These data imply that the ferryl-oxo intermediates of peroxidase catalysis, but not the Fe(III)/Fe(II) couple of PGHS, are essential for cyclooxygenase activation. In addition, our findings are strongly supportive of a branched-chain mechanism of cyclooxygenase catalysis in which one activation event leads to many cyclooxygenase turnovers.  相似文献   

8.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS) is thought to involve a multistep mechanism with several radical intermediates. The proposed mechanism begins with the transfer of the C13 pro-(S) hydrogen atom from the substrate arachidonic acid (AA) to the Tyr385 radical in PGHS, followed by oxygen insertion and several bond rearrangements. The importance of the hydrogen-transfer step to controlling the overall kinetics of cyclooxygenase catalysis has not been directly examined. We quantified the non-competitive primary kinetic isotope effect (KIE) for both PGHS-1 and -2 using several deuterated AAs, including 13-pro-(S) d-AA, 13,13-d2-AA and 10, 10, 13,13-d4-AA. The primary KIE for steady-state cyclooxygenase catalysis, Dkcat, ranged between 1.8 and 2.3 in oxygen electrode measurements. The intrinsic KIE of AA radical formation by C13 pro-(S) hydrogen abstraction in PGHS-1 was estimated to be 1.9-2.3 using rapid freeze-quench EPR kinetic analysis of anaerobic reactions and computer modeling to a mechanism that includes a slow formation of a pentadienyl AA radical and a rapid equilibration of the AA radical with a tyrosyl radical, NS1c. The observation of similar values for steady-state and pre-steady state KIEs suggests that hydrogen abstraction is a rate-limiting step in cyclooxygenase catalysis. The large difference of the observed KIE from that of plant lipoxygenases indicates that PGHS and lipoxygenases have very different mechanisms of hydrogen transfer.  相似文献   

9.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS)-1 and -2 involves reaction of a peroxide-induced Tyr385 radical with arachidonic acid (AA) to form an AA radical that reacts with O2. The potential for isomeric AA radicals and formation of an alternate tyrosyl radical at Tyr504 complicate analysis of radical intermediates. We compared the EPR spectra of PGHS-1 and -2 reacted with peroxide and AA or specifically deuterated AA in anaerobic, single-turnover experiments. With peroxide-treated PGHS-2, the carbon-centered radical observed after AA addition was consistently a pentadienyl radical; a variable wide-singlet (WS) contribution from mixture of Tyr385 and Tyr504 radicals was also present. Analogous reactions with PGHS-1 produced EPR signals consistent with varying proportions of pentadienyl and tyrosyl radicals, and two additional EPR signals. One, insensitive to oxygen exposure, is the narrow singlet tyrosyl radical with clear hyperfine features found previously in inhibitor-pretreated PGHS-1. The second type of EPR signal is a narrow singlet lacking detailed hyperfine features that disappeared upon oxygen exposure. This signal was previously ascribed to an allyl radical, but high field EPR analysis indicated that ~ 90% of the signal originates from a novel tyrosyl radical, with a small contribution from a carbon-centered species. The radical kinetics could be resolved by global analysis of EPR spectra of samples trapped at various times during anaerobic reaction of PGHS-1 with a mixture of peroxide and AA. The improved understanding of the dynamics of AA and tyrosyl radicals in PGHS-1 and -2 will be useful for elucidating details of the cyclooxygenase mechanism, particularly the H-transfer between tyrosyl radical and AA.  相似文献   

10.

Background

Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH) and substrate selective cyclooxygenase (COX-2) inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl)-N-(3-methylpyridin-2-yl)propanamide (Flu-AM1). These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known.

Methodology/Principal Findings

COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG) as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA) as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R)-Flu-AM1, COX-1 (arachidonic acid) 6 μM; COX-2 (arachidonic acid) 20 μM; COX-2 (2-AG) 1 μM; (S)-Flu-AM1, COX-1 (arachidonic acid) 3 μM; COX-2 (arachidonic acid) 10 μM; COX-2 (2-AG) 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R)-Flu-AM1 (10 μM) greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R)-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM).

Conclusions/Significance

Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.  相似文献   

11.

Background

In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen.

Methodology/Principal Findings

COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4′-hydroxyflurbiprofen and possibly also 3′-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds.

Conclusions/Significance

It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.  相似文献   

12.
Unbalanced endoplasmic reticulum (ER) homeostasis (ER stress) leads to increased generation of reactive oxygen species (ROS). Disulfide-bond formation in the ER by Ero1 family oxidases produces hydrogen peroxide (H2O2) and thereby constitutes one potential source of ER-stress-induced ROS. However, we demonstrate that Ero1α-derived H2O2 is rapidly cleared by glutathione peroxidase (GPx) 8. In 293 cells, GPx8 and reduced/activated forms of Ero1α co-reside in the rough ER subdomain. Loss of GPx8 causes ER stress, leakage of Ero1α-derived H2O2 to the cytosol, and cell death. In contrast, peroxiredoxin (Prx) IV, another H2O2-detoxifying rough ER enzyme, does not protect from Ero1α-mediated toxicity, as is currently proposed. Only when Ero1α-catalyzed H2O2 production is artificially maximized can PrxIV participate in its reduction. We conclude that the peroxidase activity of the described Ero1α–GPx8 complex prevents diffusion of Ero1α-derived H2O2 within and out of the rough ER. Along with the induction of GPX8 in ER-stressed cells, these findings question a ubiquitous role of Ero1α as a producer of cytoplasmic ROS under ER stress.  相似文献   

13.
CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB1/CB2-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids.  相似文献   

14.
Context: Bromoenol lactone (BEL) is an inhibitor of group VI phospholipases (iPLA2s), but has been shown to have severe side effects. Objective: iPLA2 characterization in osteoblasts and effect of BEL on prostaglandin (PG) E2 formation. Methods: iPLA2 expression: RT-PCR, Western Blotting. PGE2 formation: GC–MS after stimulation, treatment with inhibitors or gene silencing. Arachidonate (AA) reacylation into phospholipids, inhibitor reaction products, PGHS-1 modification proteomic analysis: HR-LC–MS/MS. AA accumulation: 14C-AA. Results: iPLA2ß and iPLA2γ were expressed and functionally active. BEL inhibition up to 20 μM caused AA accumulation and enhanced PGE2 formation, followed by a decrease at higher concentrations. BEL reacted with intracellular cysteine and GSH leading to GSH depletion and oxidative stress.

Discussion: Initial PGE2 enhancement after BEL inhibition is due to iPLA2-independent accumulation of AA. GSH depletion caused by high BEL concentrations is responsible for the decrease in PGE2 production. Conclusion: BEL must be used with caution in a cellular environment due to conditions of extreme oxidative stress.  相似文献   

15.
Prostaglandin H synthase isoforms 1 and -2 (PGHS-1 and -2) react with peroxide to form a radical on Tyr385 that initiates the cyclooxygenase catalysis. The tyrosyl radical EPR signals of PGHS-1 and -2 change over time and are altered by cyclooxygenase inhibitor binding. We characterized the tyrosyl radical dynamics using wild type human PGHS-1 (hPGHS-1) and its Y504F, Y385F, and Y385F/Y504F mutants to determine whether the radical EPR signal changes involve Tyr504 radical formation, Tyr385 radical phenyl ring rotation, or both. Reaction of hPGHS-1 with peroxide produced a wide singlet, whereas its Y504F mutant produced only a wide doublet signal, assigned to the Tyr385 radical. The cyclooxygenase specific activity and KM value for arachidonate of hPGHS-1 were not affected by the Y504F mutation, but the peroxidase specific activity and the KM value for peroxide were increased. The Y385F and Y385F/Y504F mutants retained only a small fraction of the peroxidase activity; the former had a much-reduced yield of peroxide-induced radical and the latter essentially none. After binding of indomethacin, a cyclooxygenase inhibitor, hPGHS-1 produced a narrow singlet but the Y504F mutant did not form a tyrosyl radical. These results indicate that peroxide-induced radicals form on Tyr385 and Tyr504 of hPGHS-1, with radical primarily on Tyr504 in the wild type protein; indomethacin binding prevented radical formation on Tyr385 but allowed radical formation on Tyr504. Thus, hPGHS-1 and -2 have different distributions of peroxide-derived radical between Tyr385 and Tyr504. Y504F mutants in both hPGHS-1 and -2 significantly decreased the cyclooxygenase activation efficiency, indicating that formation of the Tyr504 radical is functionally important for both isoforms.  相似文献   

16.
Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) catalyze the committed step in prostaglandin biosynthesis. Both isozymes can oxygenate a variety of related polyunsaturated fatty acids. We report here the x-ray crystal structure of dihomo-gamma-linolenic acid (DHLA) in the cyclooxygenase site of PGHS-1 and the effects of active site substitutions on the oxygenation of DHLA, and we compare these results to those obtained previously with arachidonic acid (AA). DHLA is bound within the cyclooxygenase site in the same overall L-shaped conformation as AA. C-1 and C-11 through C-20 are in the same positions for both substrates, but the positions of C-2 through C-10 differ by up to 1.74 A. In general, substitutions of active site residues caused parallel changes in the oxygenation of both AA and DHLA. Two significant exceptions were Val-349 and Ser-530. A V349A substitution caused an 800-fold decrease in the V(max)/K(m) for DHLA but less than a 2-fold change with AA; kinetic evidence indicates that C-13 of DHLA is improperly positioned with respect to Tyr-385 in the V349A mutant thereby preventing efficient hydrogen abstraction. Val-349 contacts C-5 of DHLA and appears to serve as a structural bumper positioning the carboxyl half of DHLA, which, in turn, positions properly the omega-half of this substrate. A V349A substitution in PGHS-2 has similar, minor effects on the rates of oxygenation of AA and DHLA. Thus, Val-349 is a major determinant of substrate specificity for PGHS-1 but not for PGHS-2. Ser-530 also influences the substrate specificity of PGHS-1; an S530T substitution causes 40- and 750-fold decreases in oxygenation efficiencies for AA and DHLA, respectively.  相似文献   

17.
Rat carrageenin-induced pleurisy was used to clarify the role of prostaglandin H synthase (PGHS)-2 in acute inflammation. Intrapleural injection of 0.2 ml of 2% λ-carrageenin induced accumulation of exudate and infiltration of leukocytes into the pleural cavity. When PGHS-1 and -2 proteins in the pleural exudate cells were analyzed by Western blot analysis, PGHS-2 was detectable from 1 hr after carrageenin injection. Its level rose sharply, remained high from 3 to 7 hr after injection, and then fell to near the detection limit. PGHS-1 was also detected, but kept almost the same level throughout the course of the pleurisy. Levels of prostaglandin (PG) E2 and thromboxane (TX) B2 in the exudate increased from hour 3 to hour 7, and then declined. Thus, the changes of the level of PGE2 were closely paralleled those of PGHS-2.The selective PGHS-2 inhibitors NS-398, nimesulide and SC-58125 suppressed the inflammatory reaction and caused a marked decrease in the level of PGE2 but not in those of TXB2 and 6-keto-PGF. These results suggest that the PGHS-2 expressed in the pleural exudate cells may be involved in PGE2 formation at the site of inflammation.  相似文献   

18.
Peroxide-generated tyrosyl radicals in both prostaglandin H synthase (PGHS) isozymes have been demonstrated to couple the peroxidase and cyclooxygenase activities by serving as the immediate oxidant for arachidonic acid (AA) in cyclooxygenase catalysis. Acetylation of Ser-530 of PGHS-1 by aspirin abolishes all oxygenase activity and transforms the peroxide-induced tyrosyl radical from a functional 33-35-gauss (G) wide doublet/wide singlet to a 26-G narrow singlet unable to oxidize AA. In contrast, aspirin-treated PGHS-2 (ASA-PGHS-2) no longer forms prostaglandins but retains oxygenase activity forming 11(R)- and 15(R)-hydroperoxyeicosatetraenoic acid and also retains the EPR line-shape of the native peroxide-induced 29-30-G wide singlet radical. To evaluate the functional role of the wide singlet radical in ASA-PGHS-2, we have examined the ability of this radical to oxidize AA in single-turnover EPR studies. Anaerobic addition of AA to ASA-PGHS-2 immediately after formation of the wide singlet radical generated either a 7-line EPR signal similar to the pentadienyl AA radical obtained in native PGHS-2 or a 26-28-G singlet radical. These EPR signals could be accounted for by a pentadienyl radical and a strained allyl radical, respectively. Experiments using 11d-AA, 13(R)d-AA, 15d-AA, 13,15d(2)-AA, and octadeuterated AA (d(8)-AA) confirmed that the unpaired electron in the pentadienyl radical is delocalized over C11, C13, and C15. A 6-line EPR radical was observed when 16d(2)-AA was used, indicating only one strongly interacting C16 hydrogen. These results support a functional role for peroxide-generated tyrosyl radicals in lipoxygenase catalysis by ASA-PGHS-2 and also indicate that the AA radical in ASA-PGHS-2 is more constrained than the corresponding radical in native PGHS-2.  相似文献   

19.
Prostaglandin endoperoxide H synthase-2 (PGHS-2), also known as cyclooxygenase-2 (COX-2), is a sequence homodimer. However, the enzyme exhibits half-site heme and inhibitor binding and functions as a conformational heterodimer having a catalytic subunit (Ecat) with heme bound and an allosteric subunit (Eallo) lacking heme. Some recombinant heterodimers composed of a COX-deficient mutant subunit and a native subunit (i.e. Mutant/Native PGHS-2) have COX activities similar to native PGHS-2. This suggests that the presence of heme plus substrate leads to the subunits becoming lodged in a semi-stable Eallo-mutant/Ecat-Native∼heme form during catalysis. We examined this concept using human PGHS-2 dimers composed of combinations of Y385F, R120Q, R120A, and S530A mutant or native subunits. With some heterodimers (e.g. Y385F/Native PGHS-2), heme binds with significantly higher affinity to the native subunit. This correlates with near native COX activity for the heterodimer. With other heterodimers (e.g. S530A/Native PGHS-2), heme binds with similar affinities to both subunits, and the COX activity approximates that expected for an enzyme in which each monomer contributes equally to the net COX activity. With or without heme, aspirin acetylates one-half of the subunits of the native PGHS-2 dimer, the Ecat subunits. Subunits having an S530A mutation are refractory to acetylation. Curiously, aspirin acetylates only one-quarter of the monomers of S530A/Native PGHS-2 with or without heme. This implies that there are comparable amounts of two noninterchangeable species of apoenzymes, Eallo-S530A/Ecat-Native and Eallo-Native/Ecat-S530A. These results suggest that native PGHS-2 assumes a reasonably stable, asymmetric Eallo/Ecat form during its folding and processing.  相似文献   

20.
In mouse neuroblastoma N18TG2 cells prelabeled with [3H]arachidonic acid ([3H]AA) the biosynthesis of 2-arachidonoylglycerol (2-AG) is induced by ionomycin in a fashion sensitive to an inhibitor of diacylglycerol (DAG) lipase, RHC 80267, but not to four different phospholipase C (PLC) blockers. Pulse experiments with [3H]AA showed that ionomycin stimulation leads to the sequential formation of [3H]phosphatidic acid ([3H]PA), [3H]DAG, and [3H]2-AG. [3H]2-AG biosynthesis in N18TG2 cells prelabeled with [3H]AA was counteracted by propranolol and N-ethylmaleimide, two inhibitors of the Mg2+/Ca2(+)-dependent brain PA phosphohydrolase. Pretreatment of cells with exogenous phospholipase D (PLD) led to a strong potentiation of ionomycin-induced [3H]2-AG formation. These data indicate that DAG precursors for 2-AG in intact N18TG2 cells are obtained from the hydrolysis of PA and not through the activation of PLC. The presence of 2% ethanol during ionomycin stimulation failed to elicit the synthesis of [3H]phosphatidylethanol and did not counteract the formation of [3H]PA, thus arguing against the activation of PLD by the Ca2+ ionophore. Selective inhibitors of secretory phospholipase A2 and the acyl-CoA acylase inhibitor thimerosal significantly reduced [3H]2-AG biosynthesis. The implications of these latter findings, and of the PA-dependent pathways of 2-AG formation described here, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号