首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Niemann-Pick type C disease (NPC) is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1 +/+; WT) and homozygous-mutant (Npc1 −/−; NPC) mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice.

Methodology/Principal Findings

We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice.

Conclusions/Significance

In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress and fibrosis. These findings correlate with similar parameters in cerebellum, as has been previously reported in the NPC mice model.  相似文献   

2.
3.
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 -/- mice at pre-symptomatic, early symptomatic and late stage disease by 1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 -/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 -/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.  相似文献   

4.
Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in many species. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by mutations in the NPC1 or NPC2 gene, which regulates lipid transport through the endocytic pathway. NPC disease is characterized by massive intracellular accumulation of unesterified cholesterol and other lipids in lysosomal vesicles. We examined the roles that NPC1/2 proteins play in the intracellular trafficking of tocopherol. Reduction of NPC1 or NPC2 expression or function in cultured cells caused a marked lysosomal accumulation of vitamin E in cultured cells. In vivo, tocopherol significantly accumulated in murine Npc1-null and Npc2-null livers, Npc2-null cerebella, and Npc1-null cerebral cortices. Plasma tocopherol levels were within the normal range in Npc1-null and Npc2-null mice, and in plasma samples from human NPC patients. The binding affinity of tocopherol to the purified sterol-binding domain of NPC1 and to purified NPC2 was significantly weaker than that of cholesterol (measurements kindly performed by R. Infante, University of Texas Southwestern Medical Center, Dallas, TX). Taken together, our observations indicate that functionality of NPC1/2 proteins is necessary for proper bioavailability of vitamin E and that the NPC pathology might involve tissue-specific perturbations of vitamin E status.  相似文献   

5.
Niemann-Pick type C (NPC)1 is a rare neurodegenerative disease for which treatment options are limited. A major barrier to development of effective treatments has been the lack of validated biomarkers to monitor disease progression or serve as outcome measures in clinical trials. Using targeted metabolomics to exploit the complex lipid storage phenotype that is the hallmark of NPC1 disease, we broadly surveyed Npc1−/− mouse tissues and identified elevated species across multiple sphingolipid classes that increased with disease progression. There was a striking accumulation of sphingoid bases, monohexosylceramides (MCs), and GM2 gangliosides in liver, and sphingoid bases and GM2 and GM3 gangliosides in brain. These lipids were modestly decreased following miglustat treatment, but markedly decreased in response to treatment with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), two drugs that have shown efficacy in NPC1 animal models. Extending these studies to human subjects led to identification of sphingolipid classes that were significantly altered in the plasma of NPC1 patients. Plasma MCs and ceramides were elevated, whereas sphingoid bases were reduced in NPC1 subjects. Intervention with miglustat in NPC1 patients was accompanied by striking alterations in plasma (reductions in GM1 and GM3 gangliosides) and cerebrospinal fluid (CSF) (increased MCs) sphingolipids. Similar alterations were observed in the CSF from the NPC1 feline model following HP-β-CD treatment. Our findings suggest that these lipid biomarkers may prove useful as outcome measures for monitoring efficacy of therapy in clinical trials.  相似文献   

6.
Niemann–Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. This abnormal accumulation results in a cascade of pathophysiological events including progressive, cerebellar neurodegeneration, among others. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive neurodegeneration remain unclear. In the current study, a) the use of a commercial, highly efficient standard flow‐ESI platform for protein biomarker identification is implemented and b) protein biomarkers are identified and evaluated at a terminal time point in the NPC1 null mouse model. In this study, alterations are observed in proteins related to fatty acid homeostasis, calcium binding and regulation, lysosomal regulation, and inositol biosynthesis and metabolism, as well as signaling by Rho family GTPases. New observations from this study include altered expression of Pcp2 and Limp2 in Npc1 mutant mice relative to control, with Pcp2 exhibiting multiple isoforms and specific to the cerebella. This study provides valuable insight into pathways altered in the late‐stage pathophysiology of NPC1.  相似文献   

7.
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder that results in accumulation of cholesterol and other lipids in late endosomes/lysosomes and leads to progressive neurodegeneration and premature death. The mechanism by which lipid accumulation causes neurodegeneration remains unclear. Inappropriate activation of microglia, the resident immune cells of the central nervous system, has been implicated in several neurodegenerative disorders including NPC disease. Immunohistochemical analysis demonstrates that NPC1 deficiency in mouse brains alters microglial morphology and increases the number of microglia. In primary cultures of microglia from Npc1−/− mice cholesterol is sequestered intracellularly, as occurs in other NPC-deficient cells. Activated microglia secrete potentially neurotoxic molecules such as tumor necrosis factor-α (TNFα). However, NPC1 deficiency in isolated microglia did not increase TNFα mRNA or TNFα secretion in vitro. In addition, qPCR analysis shows that expression of pro-inflammatory and oxidative stress genes is the same in Npc1+/+ and Npc1−/− microglia, whereas the mRNA encoding the anti-inflammatory cytokine, interleukin-10 in Npc1−/− microglia is ~ 60% lower than in Npc1+/+ microglia. The survival of cultured neurons was not impaired by NPC1 deficiency, nor was death of Npc1−/− and Npc1+/+ neurons in microglia-neuron co-cultures increased by NPC1 deficiency in microglia. However, a high concentration of Npc1−/− microglia appeared to promote neuron survival. Thus, although microglia exhibit an active morphology in NPC1-deficient brains, lack of NPC1 in microglia does not promote neuron death in vitro in microglia-neuron co-cultures, supporting the view that microglial NPC1 deficiency is not the primary cause of neuron death in NPC disease.  相似文献   

8.
9.
Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr?/? mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ~5-fold in splenic monocytes/macrophages accompanied by a ~4-fold increase in splenic neutrophils compared with controls. We also observed ~5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ~30–75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.  相似文献   

10.
Niemann-Pick, type C1 (NPC1) is a fatal, neurodegenerative disease, which belongs to the family of lysosomal diseases. In NPC1, endo/lysosomal accumulation of unesterified cholesterol and sphingolipids arise from improper intracellular trafficking resulting in multi-organ dysfunction. With the proximity between the brain and cerebrospinal fluid (CSF), performing differential proteomics provides a means to shed light to changes occurring in the brain. In this study, CSF samples obtained from NPC1 individuals and unaffected controls were used for protein biomarker identification. A subset of these individuals with NPC1 are being treated with miglustat, a glycosphingolipid synthesis inhibitor. Of the 300 identified proteins, 71 proteins were altered in individuals with NPC1 compared to controls including cathepsin D, and members of the complement family. Included are a report of 10 potential markers for monitoring therapeutic treatment. We observed that pro-neuropeptide Y (NPY) was significantly increased in NPC1 individuals relative to healthy controls; however, individuals treated with miglustat displayed levels comparable to healthy controls. In further investigation, NPY levels in a NPC1 mouse model corroborated our findings. We posit that NPY could be a potential therapeutic target for NPC1 due to its multiple roles in the central nervous system such as attenuating neuroinflammation and reducing excitotoxicity.  相似文献   

11.
Niemann-Pick type C disease (NPC) is a hereditary neurovisceral atypical lipid storage disorder produced by mutations in the NPC1 and NPC2 genes. The disease is characterized by unesterified cholesterol accumulation in late endosomal/lysosomal compartments and oxidative stress. The most affected tissues are the cerebellum and the liver. The lysotropic drug U18666A (U18) has been widely used as a pharmacological model to induce the NPC phenotype in several cell culture lines. It has already been reported that there is an increase in copper content in hepatoma Hu7 cells treated with U18. We confirmed this result with another human hepatoma cell line, HepG2, treated with U18 and supplemented with copper in the media. However, in mouse hippocampal primary cultures treated under similar conditions, we did not find alterations in copper content. We previously reported increased copper content in the liver of Npc1 (-/-) mice compared to control animals. Here, we extended the analysis to the copper content in the cerebella, the plasma and the bile of NPC1 deficient mice. We did not observe a significant change in copper content in the cerebella, whereas we found increased copper content in the plasma and decreased copper levels in the bile of Npc1(-/-) mice. Finally, we also evaluated the plasma content of ceruloplasmin, and we found an increase in this primary copper-binding protein in Npc1 (-/-) mice. These results indicate cell-type dependence of copper accumulation in NPC disease and suggest that copper transport imbalance may be relevant to the liver pathology observed in NPC disease.  相似文献   

12.
Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients.  相似文献   

13.
Nicotinamide delivered in drinking water at about 2 g/kg/day significantly prolonged survival and showed a suggestive improvement on memory in the Npc1 nih / Npc1 nih mouse model of infantile NPC1 disease. It is likely that this role is due to its function as a histone deacetylase (HDAC) inhibitor although another HDAC inhibitor, valproic acid, was without effect. Nicotinamide could also work by preventing/reversing oxidative stress.  相似文献   

14.

Background

The NBN gene codes for the protein nibrin, which is involved in the detection and repair of DNA double strand breaks (DSBs). The NBN gene is essential in mammals.

Methodology/Principal Findings

We have used a conditional null mutant mouse model in a proteomics approach to identify proteins with modified expression levels after 4 Gy ionizing irradiation in the absence of nibrin in vivo. Altogether, amongst ∼8,000 resolved proteins, 209 were differentially expressed in homozygous null mutant mice in comparison to control animals. One group of proteins significantly altered in null mutant mice were those involved in oxidative stress and cellular redox homeostasis (p<0.0001). In substantiation of this finding, analysis of Nbn null mutant fibroblasts indicated an increased production of reactive oxygen species following induction of DSBs.

Conclusions/Significance

In humans, biallelic hypomorphic mutations in NBN lead to Nijmegen breakage syndrome (NBS), an autosomal recessive genetic disease characterised by extreme radiosensitivity coupled with growth retardation, immunoinsufficiency and a very high risk of malignancy. This particularly high cancer risk in NBS may be attributable to the compound effect of a DSB repair defect and oxidative stress.  相似文献   

15.
Cholesterol availability is rate-limiting for myelination, and prior studies have established the importance of cholesterol synthesis by oligodendrocytes for normal CNS myelination. However, the contribution of cholesterol uptake through the endocytic pathway has not been fully explored. To address this question, we used mice with a conditional null allele of the Npc1 gene, which encodes a transmembrane protein critical for mobilizing cholesterol from the endolysosomal system. Loss of function mutations in the human NPC1 gene cause Niemann-Pick type C disease, a childhood-onset neurodegenerative disorder in which intracellular lipid accumulation, abnormally swollen axons, and neuron loss underlie the occurrence of early death. Both NPC patients and Npc1 null mice exhibit myelin defects indicative of dysmyelination, although the mechanisms underlying this defect are incompletely understood. Here we use temporal and cell-type-specific gene deletion in order to define effects on CNS myelination. Our results unexpectedly show that deletion of Npc1 in neurons alone leads to an arrest of oligodendrocyte maturation and to subsequent failure of myelin formation. This defect is associated with decreased activation of Fyn kinase, an integrator of axon-glial signals that normally promotes myelination. Furthermore, we show that deletion of Npc1 in oligodendrocytes results in delayed myelination at early postnatal days. Aged, oligodendocyte-specific null mutants also exhibit late stage loss of myelin proteins, followed by secondary Purkinje neuron degeneration. These data demonstrate that lipid uptake and intracellular transport by neurons and oligodendrocytes through an Npc1-dependent pathway is required for both the formation and maintenance of CNS myelin.  相似文献   

16.
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder that results in accumulation of cholesterol and other lipids in late endosomes/lysosomes and leads to progressive neurodegeneration and premature death. The mechanism by which lipid accumulation causes neurodegeneration remains unclear. Inappropriate activation of microglia, the resident immune cells of the central nervous system, has been implicated in several neurodegenerative disorders including NPC disease. Immunohistochemical analysis demonstrates that NPC1 deficiency in mouse brains alters microglial morphology and increases the number of microglia. In primary cultures of microglia from Npc1(-/-) mice cholesterol is sequestered intracellularly, as occurs in other NPC-deficient cells. Activated microglia secrete potentially neurotoxic molecules such as tumor necrosis factor-α (TNFα). However, NPC1 deficiency in isolated microglia did not increase TNFα mRNA or TNFα secretion in vitro. In addition, qPCR analysis shows that expression of pro-inflammatory and oxidative stress genes is the same in Npc1(+/+) and Npc1(-/-) microglia, whereas the mRNA encoding the anti-inflammatory cytokine, interleukin-10 in Npc1(-/-) microglia is ~60% lower than in Npc1(+/+) microglia. The survival of cultured neurons was not impaired by NPC1 deficiency, nor was death of Npc1(-/-) and Npc1(+/+) neurons in microglia-neuron co-cultures increased by NPC1 deficiency in microglia. However, a high concentration of Npc1(-/-) microglia appeared to promote neuron survival. Thus, although microglia exhibit an active morphology in NPC1-deficient brains, lack of NPC1 in microglia does not promote neuron death in vitro in microglia-neuron co-cultures, supporting the view that microglial NPC1 deficiency is not the primary cause of neuron death in NPC disease.  相似文献   

17.
Niemann–Pick Type C (NPC) disease is caused by a deficiency of either NPC1 or NPC2. Loss of function of either protein results in the progressive accumulation of unesterified cholesterol in every tissue leading to cell death and organ damage. Most literature on NPC disease focuses on neurological and liver manifestations. Pulmonary dysfunction is less well described. The present studies investigated how Npc1 deficiency impacts the absolute weight, lipid composition and histology of the lungs of Npc1−/− mice (Npc1nih) at different stages of the disease, and also quantitated changes in the rates of cholesterol and fatty acid synthesis in the lung over this same time span (8 to 70 days of age). Similar measurements were made in Npc2−/− mice at 70 days. All mice were of the BALB/c strain and were fed a basal rodent chow diet. Well before weaning, the lung weight, cholesterol and phospholipid (PL) content, and cholesterol synthesis rate were all elevated in the Npc1−/− mice and remained so at 70 days of age. In contrast, lung triacylglycerol content was reduced while there was no change in lung fatty acid synthesis. Despite the elevated PL content, the composition of PL in the lungs of the Npc1−/− mice was unchanged. H&E staining revealed an age-related increase in the presence of lipid-laden macrophages in the alveoli of the lungs of the Npc1−/− mice starting as early as 28 days. Similar metabolic and histologic changes were evident in the lungs of the Npc2−/− mice. Together these findings demonstrate an intrinsic lung pathology in NPC disease that is of early onset and worsens over time.  相似文献   

18.
Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1−/−) showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1−/− hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1−/− astrocytes also showed more intracellular Ca2+ signal oscillations mediated by functional connexin 43 hemichannels and P2Y1 receptors. Therefore, Npc1−/− astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.  相似文献   

19.
Niemann-Pick type C1 (NPC) disease is an autosomal recessive neurodegenerative disorder. One feature of the mouse model of NPC1 is it’s infertility. We have made transgenic mice which express the Npc1 protein exclusively in fibrillary astrocytes, using the glial fibrillary acidic protein (GFAP) promoter. This selective expression ofNpc1 corrects sterility in GFAP-Npc1E,Npc1 -/- mice. Counts of acidophils in the pituitary of GFAP-Npc1E,Npcl -/- mice, as compared toNpcl -/- mice, and measurements of dopamine D2 receptor (DRD2) mRNA in the pituitary, suggest mechanisms for fertility enhancement. We conclude that the correction of sterility in GFAP-Npc1E,Npc1 -/- mice is a result of restoring hypothalamic control of the pituitary.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号