首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IscS from Escherichia coli is a cysteine desulfurase that has been shown to be involved in Fe-S cluster formation. The enzyme converts L-cysteine to L-alanine and sulfane sulfur (S(0)) in the form of a cysteine persulfide in its active site. Recently, we reported that IscS can donate sulfur for the in vitro biosynthesis of 4-thiouridine (s(4)U), a modified nucleotide in tRNA. In addition to IscS, s(4)U synthesis in E. coli also requires the thiamin biosynthetic enzyme ThiI, Mg-ATP, and L-cysteine as the sulfur donor. We now report evidence that the sulfane sulfur generated by IscS is transferred sequentially to ThiI and then to tRNA during the in vitro synthesis of s(4)U. Treatment of ThiI with 5-((2-iodoacetamido)ethyl)-1-aminonapthalene sulfonic acid (I-AEDANS) results in irreversible inhibition, suggesting the presence of a reactive cysteine that is required for binding and/or catalysis. Both ATP and tRNA can protect ThiI from I-AEDANS inhibition. Finally, using gel shift and protease protection assays, we show that ThiI binds to unmodified E. coli tRNA(Phe). Together, these results suggest that ThiI is a recipient of S(0) from IscS and catalyzes the ultimate sulfur transfer step in the biosynthesis of s(4)U.  相似文献   

2.
IscS catalyzes the fragmentation of l-cysteine to l-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. In Escherichia coli IscS, the active site cysteine Cys(328) resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys(328) identified additional residues important for IscS function in vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesis in vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s(2)C and ms(2)i(6)A) yet showed wild type levels of Fe-S-independent thionucleosides (s(4)U and mnm(5)s(2)U) that require persulfide formation and transfer. In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesis in vivo without detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.  相似文献   

3.
Thiamine pyrophosphate is a required coenzyme that contains a mechanistically important sulfur atom. In Salmonella enterica, sulfur is trafficked to both thiamine biosynthesis and 4-thiouridine biosynthesis by the enzyme ThiI using persulfide (R-S-S-H) chemistry. It was previously reported that a thiI mutant strain could grow independent of exogenous thiamine in the presence of cysteine, suggesting there was a second mechanism for sulfur mobilization. Data reported here show that oxidation products of cysteine rescue the growth of a thiI mutant strain by a mechanism that requires the transporter YdjN and the cysteine desulfhydrase CdsH. The data are consistent with a model in which sulfide produced by CdsH reacts with cystine (Cys-S-S-Cys), S-sulfocysteine (Cys-S-SO3), or another disulfide to form a small-molecule persulfide (R-S-S-H). We suggest that this persulfide replaced ThiI by donating sulfur to the thiamine sulfur carrier protein ThiS. This model describes a potential mechanism used for sulfur trafficking in organisms that lack ThiI but are capable of thiamine biosynthesis.  相似文献   

4.
ThiI has been identified as an essential enzyme involved in the biosynthesis of thiamine and the tRNA thionucleoside modification, 4-thiouridine. In Escherichia coli and Salmonella enterica, ThiI acts as a sulfurtransferase, receiving the sulfur donated from the cysteine desulfurase IscS and transferring it to the target molecule or additional sulfur carrier proteins. However, in Bacillus subtilis and most species from the Firmicutes phylum, ThiI lacks the rhodanese domain that contains the site responsible for the sulfurtransferase activity. The lack of the gene encoding for a canonical IscS cysteine desulfurase and the presence of a short sequence of ThiI in these bacteria pointed to mechanistic differences involving sulfur trafficking reactions in both biosynthetic pathways. Here, we have carried out functional analysis of B. subtilis thiI and the adjacent gene, nifZ, encoding for a cysteine desulfurase. Gene inactivation experiments in B. subtilis indicate the requirement of ThiI and NifZ for the biosynthesis of 4-thiouridine, but not thiamine. In vitro synthesis of 4-thiouridine by ThiI and NifZ, along with labeling experiments, suggests the occurrence of an alternate transient site for sulfur transfer, thus obviating the need for a rhodanese domain. In vivo complementation studies in E. coli IscS- or ThiI-deficient strains provide further support for specific interactions between NifZ and ThiI. These results are compatible with the proposal that B. subtilis NifZ and ThiI utilize mechanistically distinct and mutually specific sulfur transfer reactions.  相似文献   

5.
In Escherichia coli, three cysteine desulfurases (IscS, SufS, and CsdA) initiate the delivery of sulfur for various biological processes such as the biogenesis of Fe-S clusters. The sulfur generated as persulfide on a cysteine residue of cysteine desulfurases is further transferred to Fe-S scaffolds (e.g. IscU) or to intermediate cysteine-containing sulfur acceptors (e.g. TusA, SufE, and CsdE) prior to its utilization. Here, we report the structures of CsdA and the CsdA-CsdE complex, which provide insight into the sulfur transfer mediated by the trans-persulfuration reaction. Analysis of the structures indicates that the conformational flexibility of the active cysteine loop in CsdE is essential for accepting the persulfide from the cysteine of CsdA. Additionally, CsdA and CsdE invoke a different binding mode than those of previously reported cysteine desulfurase (IscS) and sulfur acceptors (TusA and IscU). Moreover, the conservation of interaction-mediating residues between CsdA/SufS and CsdE/SufE further suggests that the SufS-SufE interface likely resembles that of CsdA and CsdE.  相似文献   

6.
7.
大肠杆菌半胱氨酸脱硫酶(cysteine desulfurase,IscS)是一类依赖磷酸吡哆醛(pyridoxal phosphate,PLP)的同质二聚体的酶.IscS能催化游离底物L-半胱氨酸脱硫,生成L-丙氨酸和单质硫.在此催化过程中,可形成与酶结合的半胱氨酸过硫化物中间物,并出现了7种具有不同特征性吸收峰的中间反应物.为了研究PLP的结合及中间反应物的形成及累积,对IscS中与PLP结合相关,及IscS半胱氨酸活性口袋中特定氨基酸残基位点(His104,Glu156,Asp180,Gln183和Lys206)进行定点突变,结果发现:1)IscS突变体H104Q、D180G、Q183E、K206A对PLP的结合能力具有不同程度的减弱,酶的活性明显降低甚至消失,PLP与蛋白结合的特异吸收峰消失,或发生明显偏移并出现新的吸收峰,且这些新出现的吸收峰又与蛋白形成的各种中间反应物的吸收峰一致|2)IscS突变体E156Q的活性增高,PLP与蛋白结合的吸收峰明显增加.这些结果都表明,IscS氨基酸残基可通过影响PLP的结合及质子转移引起催化过程中不同中间反应物的形成及累积,同时提高或降低蛋白的活性.  相似文献   

8.
Many bacterial species modify their DNA with the addition of sulfur to phosphate groups, a modification known as DNA phosphorothioation. DndA is known to act as a cysteine desulfurase, catalyzing a key biochemical step in phosphorothioation. However, bioinformatic analysis revealed that 19 out of the 31 known dnd gene clusters, contain only four genes (dndB-E), lacking a key cysteine desulfurase corresponding gene. There are multiple cysteine desulfurase genes in Escherichia coli, but which one of them participates into DNA phosphorothioation is unknown. Here, by employing heterologous expression of the Salmonella enterica dnd gene cluster named dptBCDE in three E. coli mutants, each of which lacked a different cysteine desulfurase gene, we show that IscS is the only cysteine desulfurase that collaborates with dptB-E, resulting in DNA phosphorothioation. Using a bacterial two-hybrid system, protein interactions between IscS and DptC, and IscS and DptE were identified. Our findings revealed IscS as a key participant in DNA phosphorothioation and lay the basis for in-depth analysis of the DNA phosphorothioation biochemical pathway.  相似文献   

9.
10.
The wobble modification in tRNAs, 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), is required for the proper decoding of NNR codons in eukaryotes. The 2-thio group confers conformational rigidity of mcm5s2U by largely fixing the C3′-endo ribose puckering, ensuring stable and accurate codon–anticodon pairing. We have identified five genes in Saccharomyces cerevisiae, YIL008w (URM1), YHR111w (UBA4), YOR251c (TUM1), YNL119w (NCS2) and YGL211w (NCS6), that are required for 2-thiolation of mcm5s2U. An in vitro sulfur transfer experiment revealed that Tum1p stimulated the cysteine desulfurase of Nfs1p, and accepted persulfide sulfurs from Nfs1p. URM1 is a ubiquitin-related modifier, and UBA4 is an E1-like enzyme involved in protein urmylation. The carboxy-terminus of Urm1p was activated as an acyl-adenylate (-COAMP), then thiocarboxylated (-COSH) by Uba4p. The activated thiocarboxylate can be utilized in the subsequent reactions for 2-thiouridine formation, mediated by Ncs2p/Ncs6p. We could successfully reconstitute the 2-thiouridine formation in vitro using recombinant proteins. This study revealed that 2-thiouridine formation shares a pathway and chemical reactions with protein urmylation. The sulfur-flow of eukaryotic 2-thiouridine formation is distinct mechanism from the bacterial sulfur-relay system which is based on the persulfide chemistry.  相似文献   

11.
Trichomonas vaginalis is a protozoan parasite of humans that is able to synthesize cysteine de novo using cysteine synthase but does not produce glutathione. In this study, high pressure liquid chromatography analysis confirmed that cysteine is the major intracellular redox buffer by showing that T. vaginalis contains high levels of cysteine (∼600 μm) comprising more than 70% of the total thiols detected. To investigate possible mechanisms for the regulation of cysteine levels in T. vaginalis, we have characterized enzymes of the mercaptopyruvate pathway. This consists of an aspartate aminotransferase (TvAspAT1), which transaminates cysteine to form 3-mercaptopyruvate (3-MP), and mercaptopyruvate sulfurtransferase (TvMST), which transfers the sulfur of 3-MP to a nucleophilic acceptor, generating pyruvate. TvMST has high activity with 3-MP as a sulfur donor and can use several thiol compounds as sulfur acceptor substrates. Our analysis indicated that TvMST has a kcat/Km for reduced thioredoxin of 6.2 × 107 m−1 s−1, more than 100-fold higher than that observed for β-mercaptoethanol and cysteine, suggesting that thioredoxin is a preferred substrate for TvMST. Thiol trapping and mass spectrometry provided direct evidence for the formation of thioredoxin persulfide as a product of this reaction. The thioredoxin persulfide could serve a biological function such as the transfer of the persulfide to a target protein or the sequestered release of sulfide for biosynthesis. Changes in MST activity of T. vaginalis in response to variation in the supply of exogenous cysteine are suggestive of a role for the mercaptopyruvate pathway in the removal of excess intracellular cysteine, redox homeostasis, and antioxidant defense.  相似文献   

12.
SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys, and active site His/CysS-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS) ligand to the active site heme. This provides the first evidence for the dissociation of CysS that has been proposed as a key event in SoxAX catalysis.  相似文献   

13.
Three multiprotein systems are known for iron-sulfur (Fe-S) cluster biogenesis in prokaryotes and eukaryotes as follows: the NIF (nitrogen fixation), the ISC (iron-sulfur cluster), and the SUF (mobilization of sulfur) systems. In all three, cysteine is the physiological sulfur source, and the sulfur is transferred from cysteine desulfurase through a persulfidic intermediate to a scaffold protein. However, the biochemical nature of the sulfur source for Fe-S cluster assembly in archaea is unknown, and many archaea lack homologs of cysteine desulfurases. Methanococcus maripaludis is a methanogenic archaeon that contains a high amount of protein-bound Fe-S clusters (45 nmol/mg protein). Cysteine in this archaeon is synthesized primarily via the tRNA-dependent SepRS/SepCysS pathway. When a ΔsepS mutant (a cysteine auxotroph) was grown with 34S-labeled sulfide and unlabeled cysteine, <8% of the cysteine, >92% of the methionine, and >87% of the sulfur in the Fe-S clusters in proteins were labeled, suggesting that the sulfur in methionine and Fe-S clusters was derived predominantly from exogenous sulfide instead of cysteine. Therefore, this investigation challenges the concept that cysteine is always the sulfur source for Fe-S cluster biosynthesis in vivo and suggests that Fe-S clusters are derived from sulfide in those organisms, which live in sulfide-rich habitats.  相似文献   

14.
15.
In Escherichia coli, sulfur in iron-sulfur clusters is primarily derived from l-cysteine via the cysteine desulfurase IscS. However, the iron donor for iron-sulfur cluster assembly remains elusive. Previous studies have shown that, among the iron-sulfur cluster assembly proteins in E. coli, IscA has a unique and strong iron-binding activity and that the iron-bound IscA can efficiently provide iron for iron-sulfur cluster assembly in proteins in vitro, indicating that IscA may act as an iron chaperone for iron-sulfur cluster biogenesis. Here we report that deletion of IscA and its paralog SufA in E. coli cells results in the accumulation of a red-colored cysteine desulfurase IscS under aerobic growth conditions. Depletion of intracellular iron using a membrane-permeable iron chelator, 2,2′-dipyridyl, also leads to the accumulation of red IscS in wild-type E. coli cells, suggesting that the deletion of IscA/SufA may be emulated by depletion of intracellular iron. Purified red IscS has an absorption peak at 528 nm in addition to the peak at 395 nm of pyridoxal 5′-phosphate. When red IscS is oxidized by hydrogen peroxide, the peak at 528 nm is shifted to 510 nm, which is similar to that of alanine-quinonoid intermediate in cysteine desulfurases. Indeed, red IscS can also be produced in vitro by incubating wild-type IscS with excess l-alanine and sulfide. The results led us to propose that deletion of IscA/SufA may disrupt the iron delivery for iron-sulfur cluster biogenesis, therefore impeding sulfur delivery by IscS, and result in the accumulation of red IscS in E. coli cells.  相似文献   

16.
17.
18.
19.
Zeng J  Zhang Y  Liu Y  Zhang X  Xia L  Liu J  Qiu G 《Biotechnology letters》2007,29(12):1983-1990
Iron–sulfur clusters are one of the most common types of redox center in nature. Three proteins of IscS (a cysteine desulfurase), IscU (a scaffold protein) and IscA (an iron chaperon) encoded by the operon iscSUA are involved in the iron–sulfur cluster assembly in Acidithiobacillus ferrooxidans. In this study the gene of IscS from A. ferrooxidans ATCC 23270 was cloned and expressed in Escherichia coli, the protein was purified by one-step affinity chromatography to homogeneity. The molecular mass of recombinant IscS was 46 kDa by SDS-PAGE. The IscS was a pyridoxal phosphate-containing protein, that catalyzed the elimination of S from l-cysteine to yield l-alanine and elemental sulfur or H2S, depending on whether or not a reducing agent was added to the reaction mixture. Jia Zeng and Yanfei Zhang contributed equally to this work.  相似文献   

20.
Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [35S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-35S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the 35S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号