首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human stratum corneum lipids: characterization and regional variations   总被引:14,自引:0,他引:14  
The lipids of mammalian stratum corneum are known to be important regulators of skin permeability. Since the human stratum corneum displays remarkable regional variations in skin permeability, we assessed the total lipid concentration, the distribution of all major lipid species, and the fatty acid composition in Bligh-Dyer extracts from four skin sites (abdomen, leg, face, and sole) that are known to display widely disparate permeability. Statistically significant differences in lipid weight were found at the four sites that were inversely proportional to their known permeability. In all four sites, among the polar lipids, the stratum corneum contained negligible phospholipids, but substantially more cholesterol sulfate (1-7%) than previously appreciated. As in the stratum corneum from other mammals, the bulk of the lipids consisted of neutral (60-80%) and sphingolipids (15-35%). Of the neutral lipids, free sterols (4- to 5-times greater than esterified sterols), free fatty acids, triglycerides, and highly nonpolar species (n-alkanes and squalene) predominated. n-Alkanes, which were present in greater quantities than previously appreciated, comprised a homologous series of odd- and even-chained compounds ranging from C19 to C34. The sphingolipids comprised over 80% ceramides vs. lesser quantities of glycosphingolipids. In all four sites, the sphingolipids were the major repository of long-chain, saturated fatty acids. The neutral lipid:sphingolipid ratio generally was proportional to the known permeability of each site: higher neutral lipids and lower sphingolipids generally were associated with superior barrier properties. These studies provide: 1) the first detailed, quantitative analysis of human stratum corneum lipids and 2) information about the variability in lipid composition at four skin sites with known differences in permeability. The latter results suggest that variations in neutral lipids, rather than sphingolipids, may underlie local variations in skin permeability.  相似文献   

2.
The epidermal permeability barrier is maintained by extracellular lipid membranes within the interstices of the stratum corneum. Ceramides, the major components of these multilayered membranes, derive in large part from hydrolysis of glucosylceramides mediated by stratum corneum beta-glucocerebrosidase (beta-GlcCerase). Prosaposin (pSAP) is a large precursor protein that is proteolytically cleaved to form four distinct sphingolipid activator proteins, which stimulate enzymatic hydrolysis of sphingolipids, including glucosylceramide. Recently, pSAP has been eliminated in a mouse model using targeted deletion and homologous recombination. In addition to the extracutaneous findings noted previously, our present data indicate that pSAP deficiency in the epidermis has significant consequences including: 1) an accumulation of epidermal glucosylceramides together with below normal levels of ceramides; 2) alterations in lipids that are bound by ester linkages to proteins of the cornified cell envelope; 3) a thickened stratum lucidum with evidence of scaling; and 4) a striking abnormality in lamellar membrane maturation within the interstices of the stratum corneum. Together, these results demonstrate that the production of pSAP, and presumably mature sphingolipid activator protein generation, is required for normal epidermal barrier formation and function. Moreover, detection of significant amounts of covalently bound omega-OH-GlcCer in pSAP-deficient epidermis suggests that deglucosylation to omega-OH-Cer is not a requisite step prior to covalent attachment of lipid to cornified envelope proteins.  相似文献   

3.
Sphingosines and phytosphingosines serve as intermediates in the synthesis of ceramides and glucosylceramides, which are prominent components of mammalian epidermis. In the present study, we have investigated the possibility that free sphingoid bases also may be present in epidermal tissue. Samples of pig epidermis were trypsinized to separate the stratum corneum from the unkeratinized portion of the epidermis. After drying, the lipids were extracted and analyzed by thin-layer chromatography using ninhydrin to detect free amino groups. Both the stratum corneum and the unkeratinized epidermal material contained a ninhydrin-positive material with the same mobility as the sphingosine standard. Quantitation of the chromatograms by photodensitometry indicated that free sphingosine bases account for 0.44% by weight of the total stratum corneum lipid and 0.09% of the lipid in the viable portion of the epidermis. To further identify this material, it was treated with 1-fluoro-2,4-dinitrobenzene, which resulted in the production of an intensely yellow N-2,4-dinitrophenyl derivative with the same mobility as N-2,4-dinitrophenylsphingosine on thin-layer chromatography. Oxidation of the isolated dinitrophenyl derivative with lead tetraacetate produced a mixture of aldehydes which were analyzed by gas-liquid chromatography. This analysis indicates that the free sphingoid bases from the stratum corneum consist of a mixture of mainly 16- through 20-carbon sphingenines and sphinganines, the most abundant components being d17:0, d17:1, d18:1 and d20:1. The production of these free sphingosine bases may be significant in regulating epidermal differentiation.  相似文献   

4.
Though avian skin is known to possess a highly lipogenic epidermis, little is known about its permeability barrier function. We correlated epidermal barrier function, fine structure and lipid biochemistry in the pigeon, Columbia livia, and compared these features with terrestrial mammalian systems. Whereas barrier function, as assessed by transepidermal water loss was not as efficient as in mammals, both groups shared certain morphological features including substantial compartmentalization of lipids in stratum corneum intercellular domains. Avian intercellular lipids derive from extrusion of intracellular non-membrane-bound droplets from lowermost corneocytes, rather than by secretion of lamellar discs from multigranular bodies, as previously reported in some avians, and in mammals. Instead, both the internal lamellae and the limiting membranes of multigranular bodies appear to degenerate, leading to the formation of non-membrane-bound droplets. The lipid content of avian epidermis and stratum corneum demonstrates important similarities to terrestrial mammals, i.e. abundant sphingolipids, a paucity of phospholipids, and abundant neutral lipids, but also certain striking differences, i.e. persistence of glycosphingolipids and triglycerides into the stratum corneum. Thus, avian stratum corneum forms a two-compartment system of lipid-depleted cells embedded in non-polar-lipid enriched intercellular domains, analogous to mammals. But, in contrast to mammals, the highly attenuated corneocytes of avians, which results from a paucity of keratin filaments, produce a 'straws-and-mortar' tissue, rather than the 'bricks-and-mortar' tissue of mammals.  相似文献   

5.
The intercellular lipids of the stratum corneum, which are highly enriched in ceramides, are critical for the mammalian epidermal permeability barrier. During the terminal stages of epidermal differentiation, the glucosylceramide content is dramatically reduced, while the content of free ceramides increases. To investigate whether beta-glucocerebrosidase (beta-GlcCer'ase) could be responsible for this change in lipid content, we characterized its activity in murine epidermis, compared enzyme activity to other murine tissues, and localized beta-GlcCer'ase activity within the epidermis. Epidermal extracts demonstrated linear 4-methylumbelliferyl-beta-D-glucose hydrolysis (to 3 h) with protein concentrations between 1 and 250 micrograms/ml. Whole epidermis contained comparable beta-glucosidase activity (9.1 +/- 0.4 nmol/min per mg DNA) to murine brain and liver, and 5-fold higher activity than spleen. Epidermal beta-glucosidase activity was stimulated greater than 15-fold by sodium taurocholate at pH 5.6, and inhibited at acidic pH (3.5-4.0). Bromoconduritol B epoxide (greater than or equal to 1.0 microM), inhibited epidermal enzyme activity by greater than 75%, while activity in brain, liver, and spleen was only inhibited by 6, 17, and 14%, respectively. Moreover, beta-GlcCer'ase mRNA expression in murine epidermis exceeded levels in liver, brain, and spleen. Finally, beta-GlcCer'ase activity was highest in the outer, more differentiated epidermal cell layers including the stratum corneum. In summary, mammalian epidermis contains an usually high percentage (approximately 75%) of beta-glucocerebrosidase activity, and the concentration of activity in the more differentiated cell layers may account for the replacement of glucosylceramide by ceramides in the outer epidermis.  相似文献   

6.
Holleran WM  Takagi Y  Uchida Y 《FEBS letters》2006,580(23):5456-5466
Mammalian epidermis produces and delivers large quantities of glucosylceramide and sphingomyelin precursors to stratum corneum extracellular domains, where they are hydrolyzed to corresponding ceramide species. This cycle of lipid precursor formation and subsequent hydrolysis represents a mechanism that protects the epidermis against potentially harmful effects of ceramide accumulation within nucleated cell layers. Prominent skin disorders, such as psoriasis and atopic dermatitis, have diminished epidermal ceramide levels, reflecting altered sphingolipid metabolism, that may contribute to disease severity/progression. Enzymatic processes in the hydrolysis of glucosylceramide and sphingomyelin, and the roles of sphingolipids in skin diseases, are the focus of this review.  相似文献   

7.
Summary The organisation of the ventral epidermis organisation was followed throughout ontogenesis in Rana ridibunda. Epidermis of tadpoles with 2–3 limbs was organised into two layers: a stratum germinativum consisting of elongated columnar cells, and an outer stratum corneum consisting of two types of cuboid cells. Two types of cells can be distinguished; they are a light (clear) cell and a dark (dense) cell. In the 4-legged tadpoles the stratum corneum cells start to flatten and a replacement layer appeared underneath. A well-defined stratum germinativum is found and within it, epidermal glands. Moulting took place for the first time in tadpoles just before metamorphosis, and a well-organised stratum granulosum was formed still containing the two main types of epidermal glands. The flask cells appear in the juveniles for the first time, greatly increasing in numbers in the adult epidermis.  相似文献   

8.
Generations of Japanese have appreciated the positive effects that sake can have on skin conditions, and studies have shown that concentrated sake suppressed the epidermal barrier disruption caused by ultraviolet B (UVB) irradiation. We investigated the effect of a topical application of a sake concentrate on the murine epidermis and found that the intercellular lipid content in an aged epidermis was significantly increased. Furthermore, the topical application of ethyl alpha-D-glucoside (alpha-EG), a component of sake, brought about a similar improvement in the levels of intercellular lipids. Following on from this, we confirmed that alpha-EG also significantly increased the content of loricrin protein, an indicator of successful corneocyte differentiation, while reducing the number of corneocyte layers in the aged stratum corneum. These results confirmed alpha-EG as the primary active component of the sake concentrate that had a positive effect on the epidermis. alpha-EG increased the intercellular lipid content, accelerated the differentiation of corneocytes, and reduced the thickness, thus improving the functions of the stratum corneum.  相似文献   

9.
Epidermal acylglucosylceramides (AGC) and acylceramides (AC) cause aggregation and stacking of stratum corneum lipid liposomes formed from a lipid mixture containing epidermal ceramides (40%), cholesterol (25%), palmitic acid (25%), and cholesteryl sulfate (10%). This demonstrates the ability of these sphingolipids to hold adjacent bilayers in close apposition and their roles in the assembly of lamellar structures in the epidermis. However, AGC and AC in their hydrogenated form also caused aggregation and stacking of the stratum corneum lipid liposomes. This throws into doubt the proposed structural specificity of linoleate in the function of AGC and AC as molecular rivets in the assembly of the epidermal lamellar granules and the stratum corneum intercellular lamellae, respectively.  相似文献   

10.
Summary The outer surface of adult Gallus domesticus scutate scale was studied as a model for epidermal cornification involving accumulation of both alpha and beta keratins. Electron-microscopic analysis demonstrated that the basal cells of the adult epidermis contained abundant lipid droplets and that filament bundles and desmosomes were distributed throughout the cell layers. Indirect immunofluorescence microscopy and double-labeling immunogold-electron microscopy confirmed that the stratum germinativum contained alpha keratin but not beta keratin. Beta keratins were first detected in the stratum intermedium and were always found intermingled with filament bundles of alpha keratin. As the differentiating cells moved into the outer regions of the stratum intermedium and the stratum corneum, the large mixed keratin filament bundles labeled increasingly more with beta keratin antiserum and relatively less so with alpha keratin antiserum. Sodium dodecyl sulfate-polyacrylamide gel analysis of vertical layers of the outer surface of the scutate scale confirmed that cells having reached the outermost layers of stratum corneum had preferentially lost alpha keratin. The mixed bundles of alpha and beta keratin filaments were closely associated with desmosomes in the lower stratum intermedium and with electron-dense aggregates in the cytoplasm of cells in the outer stratum intermedium. Using anti-desmosomal serum it was shown that these cytoplasmic plaques were desmosomes.  相似文献   

11.
Ceramides are vital components of the water barrier in mammalian skin. Epidermis-specific, a major ceramide portion contains omega-hydroxy very long chain fatty acids (C30-C36). These omega-hydroxy ceramides (Cers) are found in the extracellular lamellae of the stratum corneum either as linoleic acyl esters or protein bound. Glucosylceramide is the major glycosphingolipid of the epidermis. Synthesized from ceramide and UDP-glucose, it is thought to be itself an intracellular precursor and carrier for extracellular omega-hydroxy ceramides. To investigate whether GlcCer is an obligatory intermediate in ceramide metabolism to maintain epidermal barrier function, a mouse with an epidermis-specific glucosylceramide synthase (Ugcg) deficiency has been generated. Four days after birth animals devoid of GlcCer synthesis in keratinocytes showed a pronounced desquamation of the stratum corneum and extreme transepidermal water loss leading to death. The stratum corneum appeared as a thick unstructured mass. Lamellar bodies of the stratum granulosum did not display the usual ordered inner structure and were often irregularly arranged. Although the total amount of epidermal protein-bound ceramides remained unchanged, epidermal-free omega-hydroxy ceramides increased 4-fold and omega-hydroxy sphingomyelins, almost not detectable in wild type epidermis, emerged in quantities comparable with lost GlcCer. We conclude that the transient formation of GlcCer is vital for a regular arrangement of lipids and proteins in lamellar bodies and for the maintenance of the epidermal barrier.  相似文献   

12.
The epidermis of avians and terrestrial mammals has evolved distinct, but related mechanisms to survive in a terrestrial environment. In both phyla, stratum corneum lipids form the basis of the cutaneous permeability barrier, but barrier function is less efficient in avians. Whereas in mammals the epidermal lamellar body (LB) secretes its contents into the intercellular spaces, in the feathered epidermis of avians, its distinctive secretory organelle, the multigranular body (MGB), does not secrete its contents into the stratum corneum intercellular spaces. Yet, neutral lipid-enriched droplets, derived from the cytosolic breakdown of MGB, ultimately are squeezed through membrane pores into the stratum corneum interstices. In this study we determined: a) using ruthenium tetroxide (RuO4) fixation, whether these droplets form membrane structures after deposition in the stratum corneum interstices; and b) the similarities and differences between avian MGB and mammalian LB, using enzyme cytochemistry as a marker for secretion, and optical diffraction computer-aided image analysis and reconstruction to compare the internal structure of MGB vs. LB. MGB were shown to possess a similar lamellar substructure to LB in RuO4-fixed specimens, exhibiting comparable dimensions on optical diffraction and computer transform analysis. Moreover, the intercellular lipids of avian stratum corneum lacked membrane-substructure, as was present in parallel samples of mammalian stratum corneum. Thus, both the absence of MGB secretion, and the failure of intercellular lipids to form membrane bilayers may explain the inherent differences in barrier function in these two taxa.  相似文献   

13.
The nude mouse is an athymic mutant whose immunological deficiency has been exploited for transplantation of normal and diseased xenogeneic tissue. Histologically, its skin has no unusual features apart from the absence of hair. We report here a biochemical study of its epidermis, with comparison to the hairless mouse (which is devoid of hair but otherwise functionally normal). The epidermal glycoproteins were probed with the lectin, concanavalin A (Con A). Fluorescein isothiocyanate (FITC)-Con A overlays of cryostat skin sections gave a similar fluorescent pattern for both mouse strains: all the viable epidermal cell layers were labeled but not the stratum corneum. In contrast, when different populations of keratinocytes that were separated on Percoll gradients were analyzed by gel electrophoresis, and the gels then overlaid with iodinated Con A, all the epidermal layers, including the stratum corneum, were labeled. For all the epidermal cell layers there are substantial differences between the two mouse strains. We observe changes in the glycoprotein distribution with the stage of differentiation. Comparison with our earlier data for human epidermis indicates that the discrepancies between the nude mouse and the hairless mouse are much greater than those between the latter and man. The most striking difference is the absence in the stratum corneum of the nude mouse of a 40 K glycoprotein which is the dominant feature for the hairless mouse and for man. The gel patterns point to functional discrepancies in the epidermis of the nude mouse, particularly in the stratum corneum, not evident histologically or with FITC-Con A.  相似文献   

14.
During terminal differentiation, mammalian epidermal lipids undergo striking changes in both composition and distribution. Phospholipids and neutral lipids are replaced by a mixture of ceramides and neutral lipids organized in intercellular lamellar bilayers. Whether all of these lipids and/or whether specific lipid classes regulate permeability barrier function is not known. When hairless mice were treated with acetone, the degree of barrier perturbation (measured as transepidermal water loss, TEWL) increased linearly with the amount of lipid removed. Moreover, virtually all lipid species appeared to be removed by acetone treatment. In contrast, the nonpolar organic solvent, petroleum ether, while removing greater amounts of lipids, provoked lesser barrier abnormalities. As determined by both quantitative thin-layer chromatography and histochemistry, petroleum ether selectively extracted nonpolar lipids leaving sphingolipids and free sterols in place. In petroleum ether-treated animals, subsequent acetone treatment removed additional sphingolipids and produced a dramatic increase in TEWL. A linear relationship existed for the quantities of sphingolipid removed and degree of barrier disruption in acetone-treated, but not petroleum ether-treated animals. These results support a relationship between the total lipid content of the stratum corneum and barrier function. Secondly, although the results demonstrate the participation of the total lipid mixture in the barrier, removal of nonpolar species alone appears to cause only a modest level of barrier disruption, while removal of sphingolipids and free sterols leads to a more profound level of barrier perturbation.  相似文献   

15.
E Fuchs  H Green 《Cell》1980,19(4):1033-1042
Cells of the inner layers of the epidermis contain small keratins (46-58K), whereas the cells of the outer layers contain large keratins (63-67K) in addition to small ones. The changes in keratin composition that take place within each cell during the course of its terminal differentiation result largely from changes in synthesis. Cultured epidermal cells resemble cells of the inner layers of the epidermis in synthesizing only small keratins. The cultured cells possess translatable mRNA only for small keratins, whereas mRNA extracted from whole epidermis can be translated into both large and small keratins. As no synthesis takes place in the outermost layer of the epidermis (stratum corneum), the keratins of this layer must be synthesized earlier, but in some cases they then become smaller: this presumably occurs by post-translational processing of the molecules during the final stages of differentiation. Stratified squamous epithelia of internal organs do not form a typical stratum corneum and do not make the large keratins characteristic of epidermis. Their keratins are also different from those of cultured keratinocytes, implying that they have embarked on an alternate route of terminal keratin synthesis.  相似文献   

16.
Summary Biochemical and ultrastructural analysis of epidermis from the porpoise, Phocena phocena, revealed certain similarities and differences between cetaceans and terrestrial mammals. The predominant cell of cetacean epidermis, not found in normal terrestrial mammals, is a lipoker-atinocyte, which elaborates not only keratin filaments, but also two types of lipid organelles: first, lamellar bodies, morphologically identical to those of terrestrial mammals, are elaborated in great abundance in all suprabasal epidermal layers, forming intercellular lipid bilayers in the stratum corneum interstices: and second, non-membrane-bounded droplets appear and persist in all epidermal layers. Although the porpoise lipokeratinocyte morpologically resembles the sebokeratocyte of avians in certain respects, nonmembrane-bounded lipid droplets are not released into the intercorneocyte space as they are in avian stratum corneum. Whereas phospholipid/neutral lipid gradients are similar in porpoise and terrestrial mammals, PAS-positive glycoconjugates, specifically glycosphingolipids, are retained in porpoise stratum corneum, but lost from these layers in terrestrials. The novel, non-polar acylglucosyl-ceramides, which also are lost during cornification in terrestrial mammals, are retained in porpoise stratum corneum. The lipid components of porpoise lipokeratinocytes appear to subserve not only barrier function in a hypertonic milieu, but also underlie the unique buoyancy, streamlining, insulatory, and caloric properties exhibited as adaptations to the cetacean habitat.  相似文献   

17.
1. The lower living layers of mammalian epidermis contain a cytoplasmic tonofilament protein, prekeratin, believed to be the precursor of the keratin which is found in the outer dead cell layer or stratum corneum. 2. Prekeratin is distinguished by its property of being extractable from epidermis homogenized in the presence of citric acid trisodium citrate buffer pH 2.65. 3. In the present study we have compared the epidermal prekeratins from ten mammalian species and have shown them to be of similar amino acid composition. 4. Conditions have been established for studying the immunology of these insoluble proteins and examination of their immunological properties has shown that they are similar to one another but that their antigenic determinants are different from those of callus keratin. 5. The SDS polyacrylamide gel electrophoretic patterns of these proteins differ widely and we have also demonstrated anatomical site variation by this method.  相似文献   

18.
Serine-palmitoyl transferase activity in cultured human keratinocytes   总被引:4,自引:0,他引:4  
Sphingolipids comprise approximately 25% of the stratum corneum lipids and are considered critical constituents of the epidermal permeability barrier. Whether sphingoid base structures are synthesized in the epidermis or whether they are derived from circulating or dermal sources is not known. We report here the initial characterization of serine-palmitoyl transferase (EC 2.3.1.50; SPT), the rate-limiting enzyme in the synthesis of sphingolipids, from cultured human neonatal keratinocytes. Subcellular fractionation studies demonstrated that 79% of the total cellular SPT activity was associated with the microsomes. The specific activity of keratinocyte SPT was 270 +/- 20 pmol/min per mg of microsomal protein, a level significantly higher than activities reported in other tissues. Keratinocyte SPT showed an apparent Km for L-serine of 0.40 (+/- 0.04 mM, with an alkaline pH optimum (8.2 +/- 0.4). Keratinocyte SPT utilizes palmitoyl-CoA preferentially over other saturated or unsaturated acyl-CoA substrates; increasing acyl-CoA chain lengths above C16 by one or two carbons was less detrimental to activity than similar decrements in chain length. Finally, the mechanism-based inhibitors L-cycloserine and beta-chloro-L-alanine, demonstrated potent inhibition of keratinocyte SPT activity, with 50% inhibitory concentrations of approximately 3.0 and 25 microM, respectively. In summary, we have found that cultured human neonatal keratinocytes contain unusually high levels of serine-palmitoyl transferase activity, and that the substrate specificity of keratinocyte SPT may determine the base composition of epidermal sphingolipids.  相似文献   

19.
A continuous rat epidermal cell line (rat epidermal keratinocyte; REK) formed a morphologically well-organized epidermis in the absence of feeder cells when grown for 3 weeks on a collagen gel in culture inserts at an air-liquid interface, and developed a permeability barrier resembling that of human skin. By 2 weeks, an orthokeratinized epidermis evolved with the suprabasal layers exhibiting the differentiation markers keratin 10, involucrin, and filaggrin. Granular cells with keratohyalin granules and lamellar bodies, and corneocytes with cornified envelopes and tightly packed keratin filaments were present. Morphologically, vitamin C supplementation of the culture further enhanced the normal wavy pattern of the stratum corneum, the number of keratohyalin granules present, and the quantity and organization of intercellular lipid lamellae in the interstices of the stratum corneum. The morphological enhancements observed with vitamin C correlated with improved epidermal barrier function, as indicated by reduction of the permeation rates of tritiated corticosterone and mannitol, and transepidermal water loss, with values close to those of human skin. Moreover, filaggrin mRNA was increased by vitamin C, and western blots confirmed higher levels of profilaggrin and filaggrin, suggesting that vitamin C also influences keratinocyte differentiation in aspects other than the synthesis and organization of barrier lipids. The unique REK cell line in organotypic culture thus provides an easily maintained and reproducible model for studies on epidermal differentiation and transepidermal permeation.  相似文献   

20.
To clarify the functional relevance of sphingomyelin (SM) deacylase to the ceramide deficiency seen in atopic dermatitis (AD), we developed a new highly sensitive method and measured the metabolic intermediate sphingosylphosphorylcholine (SPC) that accumulates in the stratum corneum. SPC in intercellular lipids extracted from stratum corneum was reacted with [(14)C]acetic anhydride to yield [(14)C-C(2)]SM, which was then analyzed by TLC. In both the lesional and non-lesional stratum corneum obtained from patients with AD, there was a significant increase in the content of SPC over that of healthy control subjects. There was a reciprocal relationship between increases in SPC and decreases in ceramide levels of stratum corneum obtained from healthy controls, and from lesional and non-lesional skin from patients with AD. Comparison with other sphingolipids present in the stratum corneum demonstrated that there is a significant positive correlation between SPC and glucosylsphingosine, another lysosphingolipid derived from glucosylceramide by another novel epidermal enzyme, termed glucosylceramide deacylase. In contrast, there was no correlation between SPC and sphingosine, a degradative product generated from ceramide by ceramidase. These findings strongly suggest the physiological relevance of SM deacylase function in vivo to the ceramide deficiency found in the skin of patients with AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号