首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three groups of a total of 26 puppies were subjected to surface-induced hypothermia with or without limited left-heart bypass to seek recovery after 2.5-hr total circulatory arrest. In spite of various protective measures, surface-induced hypothermia which was carried out until the effective circulation ceased, failed to protect the animal from 2.5-hr circulatory arrest. With a combination of limited leftheart bypass, the central nervous tissue tolerated the procedure better than expected. Metabolic derangements, although severe immediately after the procedure, were reversible. Respiratory distress was a serious problem, which was considerably alleviated in the 3rd group of 10 puppies by perfusion of the lung with a solution approximating the intracellular electrolyte composition. Six puppies of this group survived the procedure, 5 without any persistent disorders. These results indicate the possibility of 2.5-hr hypothermie circulatory arrest.  相似文献   

2.
3.
Nitric oxide-induced blockade of NMDA receptors.   总被引:20,自引:0,他引:20  
We studied the effects of nitric oxide (NO)-producing agents on N-methyl-D-aspartate (NMDA) receptor activation in cultured neurons. 3-Morpholino-sydnonimine (SIN-1) blocked both NMDA-induced currents and the associated increase in intracellular Ca2+. The actions of SIN-1 were reversible and suppressed by hemoglobin. A degraded SIN-1 solution that did not release NO was unable to block NMDA receptors. This showed that the SIN-1 effects were due to NO and not to another breakdown product. Similar results were obtained with 1-nitrosopyrrolidine (an NO-containing drug) and with NO released from NaNO2. Pretreatment with hemoglobin potentiated NMDA-induced effects, demonstrating that endogenous NO modulates NMDA receptors. Since NMDA receptor activation induces NO synthesis, these results suggest a feedback inhibition of NMDA receptors by NO under physiological condition.  相似文献   

4.
5.
The aim of this study was to investigate the role of nitric oxide (NO) in a cellular model of early preconditioning (PC) in cultured neonatal rat ventricular myocytes. Cardiomyocytes "preconditioned" with 90 min of stimulated ischemia (SI) followed by 30 min reoxygenation in normal culture conditions were protected against subsequent 6 h of SI. PC was blocked by N(G)-monomethyl-L-arginine monoacetate but not by dexamethasone pretreatment. Inducible nitric oxide synthase (NOS) protein expression was not detected during PC ischemia. Pretreatment (90 min) with the NO donor S-nitroso-N-acetyl-L,L-penicillamine (SNAP) mimicked PC, resulting in significant protection. SNAP-triggered protection was completely abolished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) but was unaffected by chelerythrine or the presence of glibenclamide and 5-hydroxydecanoate. With the use of RIA, SNAP treatment increased cGMP levels, which were blocked by ODQ. Hence, NO is implicated as a trigger in this model of early PC via activation of a constitutive NOS isoform. After exposure to SNAP, the mechanism of cardioprotection is cGMP dependent but independent of protein kinase C or ATP-sensitive K(+) channels. This differs from the proposed mechanism of NO-induced cardioprotection in late PC.  相似文献   

6.
It is postulated that the organic nitrate vasodilator agents, including glyceryl trinitrate (GTN) and isosorbide dinitrate (ISDN), are prodrugs, such that biotransformation to the active inorganic metabolite, nitric oxide (NO), occurs prior to the onset of vasodilation. Furthermore, it is proposed that organic nitrate tolerance in vascular tissue involves decreased formation of NO. To test this latter hypothesis, we examined vasodilation induced by NO, GTN, and ISDN in non-tolerant, GTN-tolerant, and ISDN-tolerant rabbit aortic rings (RARs). Isolated RARs were contracted submaximally with phenylephrine; the time of onset of relaxation and percent relaxation of tissue were determined in response to NO (0.3 microM), GTN (0.03 microM), and ISDN (0.12 microM) before and after a 1-h treatment with 500 microM GTN, 500 microM ISDN, or buffer only. The data demonstrated that the response to NO was not changed in GTN-tolerant and ISDN-tolerant tissues, in which there was virtually no GTN-induced or ISDN-induced relaxation. These results are consistent with the postulate that organic nitrate vasodilator drugs must undergo biotransformation to NO before vasodilation can occur and that the mechanism of organic nitrate tolerance involves decreased formation of NO.  相似文献   

7.
8.
Excessive generation of nitric oxide (NO) has been implicated in the pathogenesis of several neurodegenerative disorders. Damage to the mitochondrial electron transport chain has also been implicated in these disorders. NO and its toxic metabolite peroxynitrite (ONOO(-)) can inhibit the mitochondrial respiratory chain, leading to energy failure and ultimately cell death. There appears to be a differential susceptibility of brain cell types to NO/ONOO(-), which may be influenced by factors including cellular antioxidant status and the ability to maintain energy requirements in the face of marked respiratory chain damage. Although formation of NO/ONOO(-) following cytokine exposure does not affect astrocyte survival, these molecules may diffuse out and cause mitochondrial damage to neighboring NO/ONOO(-)-sensitive cells such as neurons. Evidence suggests that NO/ONOO(-) causes release of neuronal glutamate, leading to glutamate-induced activation of neuronal NO synthase and generation of further damaging species. While neurons appear able to recover from short-term exposure to NO/ONOO(-), extending the period of exposure results in persistent damage to the respiratory chain and cell death ensues. These findings have important implications for acute infection vs. chronic neuroinflammatory disease states. The evidence for NO/ONOO(-)-mediated mitochondrial damage in neurodegenerative disorders is reviewed and potential therapeutic strategies are discussed.  相似文献   

9.
Cortical nitric oxide (NO) production increases during hypoxia/ischemia in the immature brain and is associated with both neurotoxicity and mitochondrial dysfunction. Mitochondrial redistribution within the cell is critical to normal neuronal function, however, the effects of hypoxia on mitochondrial dynamics are not known. This study tested the hypothesis that hypoxia impairs mitochondrial movement via NO-mediated pathways. Fluorescently labeled mitochondria were studied using time-lapse digital video microscopy in cultured cortical neurons exposed either to hypoxia/re-oxygenation or to diethyleneamine/nitric oxide adduct, DETA-NO (100-500 microm). Two NO synthase inhibitors, were used to determine NO specificity. Mitochondrial mean velocity, the percentage of movement (i.e. the time spent moving) and mitochondrial morphology were analyzed. Exposure to hypoxia reduced mitochondrial movement to 10.4 +/- 1.3% at 0 h and 7.4 +/- 1.7% at 1 h of re-oxygenation, versus 25.6 +/- 1.4% in controls (p < 0.05). Mean mitochondrial velocity (microm s(-1)) decreased from 0.374 +/- 0.01 in controls to 0.146 +/- 0.01 at 0 h and 0.177 +/- 0.02 at 1 h of re-oxygenation (p < 0.001). Exposure to DETA-NO resulted in a significant decrease in mean mitochondrial velocity at all tested time points. Treatment with NG-nitro-L-arginine methyl ester (L-NAME) prevented the hypoxia-induced decrease in mitochondrial movement at 0 h (30.1 +/- 1.6%) and at 1 h (26.1 +/- 9%) of re-oxygenation. Exposure to either hypoxia/re-oxygenation or NO also resulted in the rapid decrease in mitochondrial size. Both hypoxia and NO exposure result in impaired mitochondrial movement and morphology in cultured cortical neurons. As the effect of hypoxia on mitochondrial movement and morphology can be partially prevented by a nitric oxide synthase (NOS) inhibitor, these data suggest that an NO-mediated pathway is at least partially involved.  相似文献   

10.
As arterial partial pressure of O(2) (Pa(O(2))) is reduced during systemic hypoxia, right ventricular (RV) work and myocardial O(2) consumption (MVo(2)) increase. Mechanisms responsible for maintaining RV O(2) demand/supply balance during hypoxia have not been delineated. To address this problem, right coronary (RC) blood flow and RV O(2) extraction were measured in nine conscious, instrumented dogs exposed to normobaric hypoxia. Catheters were implanted in the right ventricle for measuring pressure, in the ascending aorta for measuring arterial pressure and for sampling arterial blood, and in an RC vein. A flow transducer was placed around the RC artery. After recovery from surgery, dogs were exposed to hypoxia in a chamber ventilated with N(2), and blood samples and hemodynamic data were collected as chamber O(2) was reduced progressively to approximately 8%. After control measurements were made, the chamber was opened and the dog was allowed to recover. N(omega)-nitro-L-arginine (L-NNA) was then administered (35 mg/kg, via RV catheter) to inhibit nitric oxide (NO) production, and the hypoxia protocol was repeated. RC blood flow increased during hypoxia due to coronary vasodilation, because RC conductance increased from 0.65 +/- 0.05 to 1.32 +/- 0.12 ml x min(-1) x 100 g(-1) x L-NNA blunted the hypoxia-induced increase in RC conductance. RV O(2) extraction remained constant at 64 +/- 4% as Pa(O(2)) was decreased, but after L-NNA, extraction increased to 70 +/- 3% during normoxia and then to 78 +/- 3% during hypoxia. RV MVo(2) increased during hypoxia, but after L-NNA, MVo(2) was lower at any respective Pa(O(2)). The relationship between heart rate times RV systolic pressure (rate-pressure product) and RV MVo(2) was not altered by l-NNA. To account for L-NNA-mediated decreases in RV MVo(2), O(2) demand/supply variables were plotted as functions of MVo(2). Slope of the conductance-MVo(2) relationship was depressed by L-NNA (P = 0.03), whereas the slope of the extraction-MVo(2) relationship increased (P = 0.003). In summary, increases in RV MVo(2) during hypoxia are met normally by increasing RC blood flow. When NO synthesis is blocked, the large RV O(2) extraction reserve is mobilized to maintain RV O(2) demand/supply balance. We conclude that NO contributes to RC vasodilation during systemic hypoxia.  相似文献   

11.
Nitric oxide-induced damage to mtDNA and its subsequent repair.   总被引:3,自引:0,他引:3       下载免费PDF全文
Mutations in mitochondrial DNA (mtDNA) have recently been associated with a variety of human diseases. One potential DNA-damaging agent to which cells are continually exposed that could be responsible for some of these mutations is nitric oxide (NO). To date, little information has been forthcoming concerning the damage caused by this gas to mtDNA. Therefore, this study was designed to investigate damage to mtDNA induced by NO and to evaluate its subsequent repair. Normal human fibroblasts were exposed to NO produced by the rapid decomposition of 1-propanamine, 3-(2-hydroxy-2-nitroso-1-propylhydrazino) (PAPA NONOate) and the resultant damage to mtDNA was determined by quantitative Southern blot analysis. This gas was found to cause damage to mtDNA that was alkali-sensitive. Treatment of the DNA with uracil-DNA glycosylase or 3-methyladenine DNA glycosylase failed to reveal additional damage, indicating that most of the lesions produced were caused by the deamination of guanine to xanthine. Studies using ligation-mediated PCR supported this finding. When a 200 bp sequence of mtDNA from cells exposed to NO was analyzed, guanine was found to be the predominantly damaged base. However, there also was damage to specific adenines. No lesions were observed at pyrimidine sites. The nucleotide pattern of damage induced by NO was different from that produced by either a reactive oxygen species generator or the methylating chemical, methylnitrosourea. Most of the lesions produced by NO were repaired rapidly. However, there appeared to be a subset of lesions which were repaired either slowly or not at all by the mitochondria.  相似文献   

12.
Mobilization of intracellular Ca(2+) stores regulates a multitude of cellular functions, but the role of intracellular Ca(2+) release via the ryanodine receptor (RyR) in the brain remains incompletely understood. We found that nitric oxide (NO) directly activates RyRs, which induce Ca(2+) release from intracellular stores of central neurons, and thereby promote prolonged Ca(2+) signalling in the brain. Reversible S-nitrosylation of type 1 RyR (RyR1) triggers this Ca(2+) release. NO-induced Ca(2+) release (NICR) is evoked by type 1 NO synthase-dependent NO production during neural firing, and is essential for cerebellar synaptic plasticity. NO production has also been implicated in pathological conditions including ischaemic brain injury, and our results suggest that NICR is involved in NO-induced neuronal cell death. These findings suggest that NICR via RyR1 plays a regulatory role in the physiological and pathophysiological functions of the brain.  相似文献   

13.
S-Nitrosylation of protein thiol groups by nitric oxide (NO) is a widely recognized protein modification. In this study we show that nitrosonium tetrafluoroborate (BF4NO), a NO+ donor, modified the thiol groups of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosylation and caused enzyme inhibition. The resultant protein-S-nitrosothiol was found to be unstable and to decompose spontaneously, thereby restoring enzyme activity. In contrast, the NO-releasing compound S-nitrosoglutathione (GSNO) promoted S-glutathionylation of a thiol group of GAPDH both in vitro and under cellular conditions. The GSH-mixed protein disulfide formed led to a permanent enzyme inhibition, but upon dithiothreitol addition a functional active GAPDH was recovered. This S-glutathionylation is specific for GSNO because GSH itself was unable to produce protein-mixed disulfides. During cellular nitrosative stress, the production of intracellular GSNO might channel signaling responses to form protein-mixed disulfide that can regulate intracellular function.  相似文献   

14.
15.
Mitochondria are present as tubular organelles in neuronal projections. Here, we report that mitochondria undergo profound fission in response to nitric oxide (NO) in cortical neurons of primary cultures. Mitochondrial fission by NO occurs long before neurite injury and neuronal cell death. Furthermore, fission is accompanied by ultrastructural damage of mitochondria, autophagy, ATP decline and generation of free radicals. Fission is occasionally asymmetric and can be reversible. Strikingly, mitochondrial fission is also an early event in ischemic stroke in vivo. Mitofusin 1 (Mfn1) or dominant-negative Dynamin related protein 1 (Drp1(K38A)) inhibits mitochondrial fission induced by NO, rotenone and Amyloid-beta peptide. Conversely, overexpression of Drp1 or Fis1 elicits fission and increases neuronal loss. Importantly, NO-induced neuronal cell death was mitigated by Mfn1 and Drp1(K38A). Thus, persistent mitochondrial fission may play a causal role in NO-mediated neurotoxicity.  相似文献   

16.
The nitric oxide (NO) cytotoxicity has been well documented in bacteria and mammalian cells. However, the underlying mechanism is still not fully understood. Here we report that transient NO exposure effectively inhibits cell growth of Escherichia coli in minimal medium under anaerobic growth conditions and that cell growth is restored when the NO-exposed cells are either supplemented with the branched-chain amino acids (BCAA) anaerobically or returned to aerobic growth conditions. The enzyme activity measurements show that dihydroxyacid dehydratase (IlvD), an iron-sulphur enzyme essential for the BCAA biosynthesis, is completely inactivated in cells by NO with the concomitant formation of the IlvD-bound dinitrosyl iron complex (DNIC). Fractionation of the cell extracts prepared from the NO-exposed cells reveals that a large number of different protein-bound DNICs are formed by NO. While the IlvD-bound DNIC and other protein-bound DNICs are stable in cells under anaerobic growth conditions, they are efficiently repaired under aerobic growth conditions even without new protein synthesis. Additional studies indicate that L-cysteine may have an important role in repairing the NO-modified iron-sulphur proteins in aerobically growing E. coli cells. The results suggest that cellular deficiency to repair the NO-modified iron-sulphur proteins may directly contribute to the NO-induced bacteriostasis under anaerobic conditions.  相似文献   

17.
Parkin promotes cell survival by removing damaged mitochondria via mitophagy. However, although some studies have suggested that Parkin induces cell death, the regulatory mechanism underlying the dual role of Parkin remains unknown. Herein, we report that mitochondrial ubiquitin ligase (MITOL/MARCH5) regulates Parkin‐mediated cell death through the FKBP38‐dependent dynamic translocation from the mitochondria to the ER during mitophagy. Mechanistically, MITOL mediates ubiquitination of Parkin at lysine 220 residue, which promotes its proteasomal degradation, and thereby fine‐tunes mitophagy by controlling the quantity of Parkin. Deletion of MITOL leads to accumulation of the phosphorylated active form of Parkin in the ER, resulting in FKBP38 degradation and enhanced cell death. Thus, we have shown that MITOL blocks Parkin‐induced cell death, at least partially, by protecting FKBP38 from Parkin. Our findings unveil the regulation of the dual function of Parkin and provide a novel perspective on the pathogenesis of PD.  相似文献   

18.
The objective of this work was to test the hypothesis that the limitation of nitric oxide (NO) availability accentuates microvascular reactivity to oxygen. The awake hamster chamber window model was rendered hypoxic and hyperoxic by ventilation with 10 and 100% oxygen. Systemic and microvascular parameters were determined in the two conditions and compared with normoxia in a group receiving the NO scavenger nitronyl nitroxide and a control group receiving only the vehicle (saline). Mean arterial blood pressure did not change with different gas mixtures during infusion of the vehicle, but it increased significantly in the NO-depleted group. NO scavenging increased the reactivity of microvessels to the changed oxygen supply, causing the arteriolar wall to significantly increase oxygen consumption. Tissue Po2 was correspondingly significantly reduced during NO scavenger infusion. The present findings support the hypothesis that microvascular oxygen consumption is proportional to oxygen-induced vasoconstriction. The effect of oxygen on vascular tone is modulated by NO. As a consequence, NO acts as a regulator of the vessel wall oxygen consumption. The vessel wall consumes oxygen in proportion to the local Po2, and an impairment of NO availability renders the circulation more sensitive to changes in the oxygen supply.  相似文献   

19.
20.
Nitric oxide (NO) has multiple biologic functions: in the brain it acts as a neuronal messenger; elsewhere, it causes smooth muscle relaxation, inhibition of platelet aggregation, inhibition of leukocyte adhesion, inhibition of tumor growth, and microbiostasis. Our studies show that production of NO is responsible for the unusual unresponsiveness of BN rat spleen cells to mitogens. NG-monomethyl-L-arginine (NGMMA), a potent competitive inhibitor for NO synthase, reverses this defect. Lysed RBC or NGMMA were shown to enhance mitogen-induced spleen cell proliferation only one- to twofold in Lewis rats (that have normal mitogen responsiveness) but act to stimulate BN rat T cells by 10- to 100-fold. NGMMA-enhanced proliferation was significantly diminished by prior depletion of macrophages. Surprisingly, NO did not inhibit IL-2 production in 48-h cultures of BN rat spleen cells, and exogenous IL-2 was ineffective in releasing NO-mediated suppression. These studies indicate that NO produced by macrophages can completely and reversibly inhibit T cell proliferation. The BN rat appears to be unique in its production of very high levels of NO, making it an especially useful animal model for studying the biologic control and functional consequences of NO generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号