首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, three different strains (BrG1, BrG2, and BrG3) of ferrous iron-oxidizing, nitrate-reducing bacteria were obtained from freshwater sediments. All three strains were facultative anaerobes and utilized a variety of organic substrates and molecular hydrogen with nitrate as electron acceptor. In this study, analyses of 16S rDNA sequences showed that strain BrG1 was affiliated with the genus Acidovorax, strain BrG2 with the genus Aquabacterium, and strain BrG3 with the genus Thermomonas. Previously, bacteria similar to these three strains were detected with molecular techniques in MPN dilution series for ferrous iron-oxidizing, nitrate-reducing bacteria inoculated with different freshwater sediment samples. In the present study, further molecular analyses of these MPN cultures indicated that the ability to oxidize ferrous iron with nitrate is widespread amongst the Proteobacteria and may also be found among the Gram-positive bacteria with high GC content of DNA. Nitrate-reducing bacteria oxidized ferrous iron to poorly crystallized ferrihydrite that was suitable as an electron acceptor for ferric iron-reducing bacteria. Biologically produced ferrihydrite and synthetically produced ferrihydrite were both well suited as electron acceptors in MPN dilution cultures. Repeated anaerobic cycling of iron was shown in a coculture of ferrous iron-oxidizing bacteria and the ferric iron-reducing bacterium Geobacter bremensis. The results indicate that iron can be cycled between its oxidation states +II and +III by microbial activities in anoxic sediments.  相似文献   

2.
Iron-reducing bacteria have been reported to reduce humic acids and low-molecular-weight quinones with electrons from acetate or hydrogen oxidation. Due to the rapid chemical reaction of amorphous ferric iron with the reduced reaction products, humic acids and low-molecular-weight redox mediators may play an important role in biological iron reduction. Since many anaerobic bacteria that are not able to reduce amorphous ferric iron directly are known to transfer electrons to other external acceptors, such as ferricyanide, 2,6-anthraquinone disulfonate (AQDS), or molecular oxygen, we tested several physiologically different species of fermenting bacteria to determine their abilities to reduce humic acids. Propionibacterium freudenreichii, Lactococcus lactis, and Enterococcus cecorum all shifted their fermentation patterns towards more oxidized products when humic acids were present; P. freudenreichii even oxidized propionate to acetate under these conditions. When amorphous ferric iron was added to reoxidize the electron acceptor, humic acids were found to be equally effective when they were added in substoichiometric amounts. These findings indicate that in addition to iron-reducing bacteria, fermenting bacteria are also capable of channeling electrons from anaerobic oxidations via humic acids towards iron reduction. This information needs to be considered in future studies of electron flow in soils and sediments.  相似文献   

3.
铁还原菌降解石油烃的研究进展   总被引:1,自引:0,他引:1  
张涵  孙珊珊  董浩  承磊  佘跃惠 《微生物学报》2020,60(6):1246-1258
铁还原菌是指能够利用细胞外Fe(III)作为末端电子受体,通过氧化有机物将Fe(III)还原为Fe(II)微生物的总称。铁还原作用广泛存在于土壤、河流、海洋、地表含水层以及高温高压的地下深部油藏。在厌氧或兼性厌氧条件下,Fe(III)还原耦合有机物的降解,对铁、碳元素的生物地球化学循环具有重要意义。本文介绍了铁还原菌的多样性和铁还原作用机理,综述了铁还原菌在石油烃降解方面的研究进展。此外,还总结了铁还原菌在生物修复中的潜在作用,并对未来的研究方向进行了展望。  相似文献   

4.
Five moderately thermophilic iron-oxidizing bacteria, including representative strains of the three classified species (Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidimicrobium ferrooxidans), were shown to be capable of reducing ferric iron to ferrous iron when they were grown under oxygen limitation conditions. Iron reduction was most readily observed when the isolates were grown as mixotrophs or heterotrophs with glycerol as an electron donor; in addition, some strains were able to couple the oxidation of tetrathionate to the reduction of ferric iron. Cycling of iron between the ferrous and ferric states was observed during batch culture growth in unshaken flasks incubated under aerobic conditions, although the patterns of oxidoreduction of iron varied in different species of iron-oxidizing moderate thermophiles and in strains of a single species (S. acidophilus). All three bacterial species were able to grow anaerobically with ferric iron as a sole electron acceptor; the growth yields correlated with the amount of ferric iron reduced when the isolates were grown in the absence of oxygen. One of the moderate thermophiles (identified as a strain of S. acidophilus) was able to bring about the reductive dissolution of three ferric iron-containing minerals (ferric hydroxide, jarosite, and goethite) when it was grown under restricted aeration conditions with glycerol as a carbon and energy source. The significance of iron reduction by moderately thermophilic iron oxidizers in both environmental and applied contexts is discussed.Moderately thermophilic acidophilic bacteria that catalyze the dissimilatory oxidation of ferrous iron are distinct both phylogenetically and in aspects of their physiology. They differ from the known acidophilic mesophilic iron oxidizers (gram-negative, nonsporulating chemolithotrophic bacteria) and the extremely thermophilic iron oxidizers (certain archaea) in several fundamental ways, including cellular morphology (they are gram-positive rods that often form endospores) and growth temperature optima, which are typically 45 to 55°C (15). In addition, the moderately thermophilic iron-oxidizing acidophiles characteristically have a highly versatile metabolism (18) and may grow as autotrophs (e.g., in media containing ferrous iron or reduced sulfur), heterotrophs (e.g., on yeast extract), mixotrophs (e.g., in media containing both ferrous iron and glucose, in which both CO2 and glucose are used as carbon sources), or chemolithoheterotrophs (e.g., in ferrous iron-yeast extract medium, in which iron acts as the energy source and yeast extract is the carbon source). Isolates have been obtained from a range of thermal acidic environments, such as geothermal areas, self-heating mine waste spoils, and commercial mineral-processing operations (2a, 5, 14). There are currently two recognized genera of these bacteria. All but one Sulfobacillus species are iron- and sulfur-oxidizing, gram-positive, sporulating rods. Two such species have been described, Sulfobacillus thermosulfidooxidans and Sulfobacillus acidophilus, which may be distinguished by their different chromosomal DNA base compositions and by their abilities to grow autotrophically on reduced sulfur (16). The genus Acidimicrobium currently contains a single species, Acidimicrobium ferrooxidans. This organism differs from Sulfobacillus spp. by its greater capacity to fix CO2, by its lower tolerance of ferric iron, by its apparent lack of spore formation (although it is also gram positive), and by its chromosomal DNA base composition (4). Analysis of 16S rRNA sequences has also differentiated this moderate thermophile from Sulfobacillus spp. (9).The small amount of energy associated with the oxidation of ferrous iron (−30 kJ mol−1 at pH 2) can serve as the exclusive source of energy for moderately thermophilic iron-oxidizing acidophiles when they are growing autotrophically with oxygen as the terminal electron acceptor. Under limited aeration conditions, ferric iron, which is often abundant and present in a soluble form in extremely acidic environments, is a thermodynamically attractive alternative electron sink (electrode potential [E′], +780 mV). Ferric iron reduction by mesophilic chemolithotrophic and heterotrophic acidophiles has been observed previously (5, 7, 17). Some moderately thermophilic, acidophilic, heterotrophic bacteria (Alicyclobacillus-like isolates) (5a) and the extremely thermophilic archaeon Sulfolobus acidocaldarius (3) can also reduce iron. While many neutrophilic microorganisms are also able to reduce ferric iron, the ability to conserve energy to support growth by coupling organic matter oxidation exclusively to ferric iron reduction appears to be more restricted among neutrophilic bacteria (11).In this paper, we describe the dissimilatory reduction of ferric iron by representative isolates of different species of iron-oxidizing moderate thermophiles with both an organic electron donor (glycerol) and an inorganic electron donor (tetrathionate), and we also describe the reductive dissolution of ferric iron-containing minerals by a Sulfobacillus isolate.  相似文献   

5.
Iron-reducing bacteria can transfer electrons to ferric iron oxides which are barely soluble at neutral pH, and electron-shuttling compounds or chelators are discussed to be involved in this process. Experiments using semipermeable membranes for separation of ferric iron-reducing bacteria from ferric iron oxides do not provide conclusive results in this respect. Here, we used ferrihydrite embedded in 1% agar to check for electron-shuttling compounds in pure and in enrichment cultures. Geobacter sulfurreducens reduced spatially distant ferrihydrite only in the presence of anthraquinone-2,6-disulfonate, a small molecule known to shuttle electrons between the bacterial cell and ferrihydrite. However, indications for the production and excretion of electron-shuttling compounds or chelators were found in ferrihydrite-containing agar dilution cultures that were inoculated with ferric iron-reducing enrichment cultures.  相似文献   

6.
The fluidized sediment ecosystem off French Guiana is characterized by active physical reworking, diversity of electron acceptors and highly variable redox regime. It is well studied geochemically but little is known about specific microorganisms involved in its biogeochemistry. Based on the biogeochemical profiles and rate kinetics, several possible biotically mediated pathways of the carbon, sulfur and iron cycles were hypothesized. Enrichment studies were set up with a goal to culture microorganisms responsible for these pathways. Stable microbial consortia potentially capable of the following chemolithoautotrophic types were enriched from the environment and characterized: elemental sulfur/thiosulfate disproportionators, thiosulfate-oxidizing ferrihydrite and nitrate reducers, sulfide/ferrous sulfide oxidizers coupled with nitrate and microaerophilic iron oxidizers. Attempts to generate several enrichments (anoxic ammonia oxidation, and sulfide oxidizers with ferric iron or manganese oxide) were not successful. Heterotrophic sulfate and elemental sulfur reduction bacteria are prominent and dominate reductive sulfur transformations. We hypothesize that carbon dioxide fixation coupled with synthesis of organic matter happens mostly via sulfur disproportionation and sulfur species oxidation with iron oxidation playing a minor role.  相似文献   

7.
Observations in enrichment cultures of ferric iron-reducing bacteria indicated that ferrihydrite was reduced to ferrous iron minerals via sulfur cycling with sulfide as the reductant. Ferric iron reduction via sulfur cycling was investigated in more detail with Sulfurospirillum deleyianum, which can utilize sulfur or thiosulfate as an electron acceptor. In the presence of cysteine (0.5 or 2 mM) as the sole sulfur source, no (microbial) reduction of ferrihydrite or ferric citrate was observed, indicating that S. deleyianum is unable to use ferric iron as an immediate electron acceptor. However, with thiosulfate at a low concentration (0.05 mM), growth with ferrihydrite (6 mM) was possible and sulfur was cycled up to 60 times. Also, spatially distant ferrihydrite in agar cultures was reduced via diffusible sulfur species. Due to the low concentrations of thiosulfate, S. deleyianum produced only small amounts of sulfide. Obviously, sulfide delivered electrons to ferrihydrite with no or only little precipitation of black iron sulfides. Ferrous iron and oxidized sulfur species were produced instead, and the latter served again as the electron acceptor. These oxidized sulfur species have not yet been identified. However, sulfate and sulfite cannot be major products of ferrihydrite-dependent sulfide oxidation, since neither compound can serve as an electron acceptor for S. deleyianum. Instead, sulfur (elemental S or polysulfides) and/or thiosulfate as oxidized products could complete a sulfur cycle-mediated reduction of ferrihydrite.  相似文献   

8.
AIMS: To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. METHODS AND RESULTS: Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. CONCLUSIONS: The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. SIGNIFICANCE AND IMPACT OF THE STUDY: Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.  相似文献   

9.
Anaerobic Growth of Thiobacillus ferrooxidans   总被引:4,自引:0,他引:4       下载免费PDF全文
The obligately autotrophic acidophile Thiobacillus ferrooxidans was grown on elemental sulfur in anaerobic batch cultures, using ferric iron as an electron acceptor. During anaerobic growth, ferric iron present in the growth media was quantitatively reduced to ferrous iron. The doubling time in anaerobic cultures was approximately 24 h. Anaerobic growth did not occur in the absence of elemental sulfur or ferric iron. During growth, a linear relationship existed between the concentration of ferrous iron accumulated in the cultures and the cell density. The results suggest that ferric iron may be an important electron acceptor for the oxidation of sulfur compounds in acidic environments.  相似文献   

10.
Observations in enrichment cultures of ferric iron-reducing bacteria indicated that ferrihydrite was reduced to ferrous iron minerals via sulfur cycling with sulfide as the reductant. Ferric iron reduction via sulfur cycling was investigated in more detail with Sulfurospirillum deleyianum, which can utilize sulfur or thiosulfate as an electron acceptor. In the presence of cysteine (0.5 or 2 mM) as the sole sulfur source, no (microbial) reduction of ferrihydrite or ferric citrate was observed, indicating that S. deleyianum is unable to use ferric iron as an immediate electron acceptor. However, with thiosulfate at a low concentration (0.05 mM), growth with ferrihydrite (6 mM) was possible and sulfur was cycled up to 60 times. Also, spatially distant ferrihydrite in agar cultures was reduced via diffusible sulfur species. Due to the low concentrations of thiosulfate, S. deleyianum produced only small amounts of sulfide. Obviously, sulfide delivered electrons to ferrihydrite with no or only little precipitation of black iron sulfides. Ferrous iron and oxidized sulfur species were produced instead, and the latter served again as the electron acceptor. These oxidized sulfur species have not yet been identified. However, sulfate and sulfite cannot be major products of ferrihydrite-dependent sulfide oxidation, since neither compound can serve as an electron acceptor for S. deleyianum. Instead, sulfur (elemental S or polysulfides) and/or thiosulfate as oxidized products could complete a sulfur cycle-mediated reduction of ferrihydrite.  相似文献   

11.
Nineteen characterized strains and isolates of acidophilic heterotrophic bacteria were screened for their abilities to catalyse the reductive dissolution of the ferric iron mineral schwertmannite, under oxygen-limiting conditions. Acidocella facilis, Acidobacterium capsulatum, and all of the Acidiphilium, Acidocella and Acidobacterium-like isolates that grew in liquid cultures were able to reduce iron. In contrast, neither Acidisphaera rubrifaciens nor three Acidisphaera-like isolates tested were found to have the capacity for dissimilatory iron reduction. One of two iron-oxidizing Frateuria-like isolates also reduced iron under oxygen-limiting conditions. Microbial dissolution of schwertmannite was paralleled with increased concentrations of soluble ferrous iron and sulfate in microbial cultures, together with increased pH values and decreased redox potentials. While dissimilatory ferric iron reduction has been described previously for Acidiphilium spp., this is this first report of this capacity in Acidocella and the moderate acidophile Acidobacterium. The finding has significant implications for understanding of the biogeochemistry of acidic environments.  相似文献   

12.
Methanogenesis and iron reduction play major roles in determining global fluxes of greenhouse gases. Despite their importance, environmental factors that influence their interactions are poorly known. Here, we present evidence that pH significantly influences the balance between each reaction in anoxic environments that contain ferric (oxyhydr)oxide minerals. In sediment bioreactors that contained goethite as a source of ferric iron, both iron reduction and methanogenesis occurred but the balance between them varied significantly with pH. Compared to bioreactors receiving acidic media (pH 6), electron donor oxidation was 85% lower for iron reduction and 61% higher for methanogenesis in bioreactors receiving alkaline media (pH 7.5). Thus, methanogenesis displaced iron reduction considerably at alkaline pH. Geochemistry data collected from U.S. aquifers demonstrate that a similar pattern also exists on a broad spatial scale in natural settings. In contrast, in bioreactors that were not augmented with goethite, clay minerals served as the source of ferric iron and the balance between each reaction did not vary significantly with pH. We therefore conclude that pH can regulate the relative contributions of microbial iron reduction and methanogenesis to carbon fluxes from terrestrial environments. We further propose that the availability of ferric (oxyhydr)oxide minerals influences the extent to which the balance between each reaction is sensitive to pH. The results of this study advance our understanding of environmental controls on microbial methane generation and provide a basis for using pH and the occurrence of ferric minerals to refine predictions of greenhouse gas fluxes.  相似文献   

13.
Rapid Assay for Microbially Reducible Ferric Iron in Aquatic Sediments   总被引:32,自引:12,他引:20       下载免费PDF全文
The availability of ferric iron for microbial reduction as directly determined by the activity of iron-reducing organisms was compared with its availability as determined by a newly developed chemical assay for microbially reducible iron. The chemical assay was based on the reduction of poorly crystalline ferric iron by hydroxylamine under acidic conditions. There was a strong correlation between the extent to which hydroxylamine could reduce various synthetic ferric iron forms and the susceptibility of the iron to microbial reduction in an enrichment culture of iron-reducing organisms. When sediments that contained hydroxylamine-reducible ferric iron were incubated under anaerobic conditions, ferrous iron accumulated as the concentration of hydroxylamine-reducible ferric iron declined over time. Ferrous iron production stopped as soon as the hydroxylamine-reducible ferric iron was depleted. In anaerobic incubations of reduced sediments that did not contain hydroxylamine-reducible ferric iron, there was no microbial iron reduction, even though the sediments contained high concentrations of oxalate-extractable ferric iron. A correspondence between the presence of hydroxylamine-reducible ferric iron and the extent of ferric iron reduction in anaerobic incubations was observed in sediments from an aquifer and in fresh- and brackish-water sediments from the Potomac River estuary. The assay is a significant improvement over previously described procedures for the determination of hydroxylamine-reducible ferric iron because it provides a correction for the high concentrations of solid ferrous iron which may also be extracted from sediments with acid. This is a rapid, simple technique to determine whether ferric iron is available for microbial reduction.  相似文献   

14.
Microbial ferric iron reductases   总被引:1,自引:0,他引:1  
Almost all organisms require iron for enzymes involved in essential cellular reactions. Aerobic microbes living at neutral or alkaline pH encounter poor iron availability due to the insolubility of ferric iron. Assimilatory ferric reductases are essential components of the iron assimilatory pathway that generate the more soluble ferrous iron, which is then incorporated into cellular proteins. Dissimilatory ferric reductases are essential terminal reductases of the iron respiratory pathway in iron-reducing bacteria. While our understanding of dissimilatory ferric reductases is still limited, it is clear that these enzymes are distinct from the assimilatory-type ferric reductases. Research over the last 10 years has revealed that most bacterial assimilatory ferric reductases are flavin reductases, which can serve several physiological roles. This article reviews the physiological function and structure of assimilatory and dissimilatory ferric reductases present in the Bacteria, Archaea and Yeast. Ferric reductases do not form a single family, but appear to be distinct enzymes suggesting that several independent strategies for iron reduction may have evolved.  相似文献   

15.
Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction   总被引:15,自引:0,他引:15  
Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.  相似文献   

16.
Nine out of ten anaerobic enrichment cultures inoculated with sediment samples from various freshwater, brackish-water, and marine sediments exhibited ferrous iron oxidation in mineral media with nitrate and an organic cosubstrate at pH 7.2 and 30° C. Anaerobic nitrate-dependent ferrous iron oxidation was a biological process. One strain isolated from brackish-water sediment (strain HidR2, a motile, nonsporeforming, gram-negative rod) was chosen for further investigation of ferrous iron oxidation in the presence of acetate as cosubstrate. Strain HidR2 oxidized between 0.7 and 4.9 mM ferrous iron aerobically and anaerobically at pH 7.2 and 30° C in the presence of small amounts of acetate (between 0.2 and 1.1 mM). The strain gained energy for growth from anaerobic ferrous iron oxidation with nitrate, and the ratio of iron oxidized to acetate provided was constant at limiting acetate supply. The ability to oxidize ferrous iron anaerobically with nitrate at approximately pH 7 appears to be a widespread capacity among mesophilic denitrifying bacteria. Since nitrate-dependent iron oxidation closes the iron cycle within the anoxic zone of sediments and aerobic iron oxidation enhances the reoxidation of ferrous to ferric iron in the oxic zone, both processes increase the importance of iron as a transient electron carrier in the turnover of organic matter in natural sediments. Received: 24 April 1997 / Accepted: 22 September 1997  相似文献   

17.
18.
The effect of pH, oxygen and ferrous iron on growth and oxidation rates of iron-oxidizing bacteria (Gallionella spp and Leptothrix spp) as well as indirect effects, the most prominent being catalytic activity of the produced ferric iron deposits, were investigated. Deposits of biotic origin exhibit slightly lower surface oxidation rates compared to abiotically produced ferric iron. It was shown that the required habitat conditions of the studied species hardly overlap, but increase the pH/oxygen range of potential Fe(II) oxidation conditions. The study highlights the combined effect of microbial iron oxidation and catalytic properties of the Mn and Fe oxidation products.  相似文献   

19.
Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria   总被引:8,自引:4,他引:4       下载免费PDF全文
Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was noted in only one strain (Acidiphilium facilis), an acidophile which did not reduce iron. Insoluble forms of ferric iron, both amorphous and crystalline, were reduced, as well as soluble iron. There was evidence that, in at least some acidophilic heterotrophs, iron reduction was enzymically mediated and that ferric iron could act as a terminal electron acceptor. In anaerobically incubated cultures, bacterial biomass increased with increasing concentrations of ferric but not ferrous iron. Mixed cultures of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans and an acidophilic heterotroph (SJH) produced sequences of iron cycling in ferrous iron-glucose media.  相似文献   

20.
Anaerobic, nitrate-dependent microbial oxidation of ferrous iron was recently recognized as a new type of metabolism. In order to study the occurrence of three novel groups of ferrous iron-oxidizing, nitrate-reducing bacteria (represented by strains BrG1, BrG2, and BrG3), 16S rRNA-targeted oligonucleotide probes were developed. In pure-culture experiments, these probes were shown to be suitable for fluorescent in situ hybridization, as well as for hybridization analysis of denaturing gradient gel electrophoresis (DGGE) patterns. However, neither enumeration by in situ hybridization nor detection by the DGGE-hybridization approach was feasible with sediment samples. Therefore, the DGGE-hybridization approach was combined with microbiological methods. Freshwater sediment samples from different European locations were used for enrichment cultures and most-probable-number (MPN) determinations. Bacteria with the ability to oxidize ferrous iron under nitrate-reducing conditions were detected in all of the sediment samples investigated. At least one of the previously described types of bacteria was detected in each enrichment culture. MPN studies showed that sediments contained from 1 × 105 to 5 × 108 ferrous iron-oxidizing, nitrate-reducing bacteria per g (dry weight) of sediment, which accounted for at most 0.8% of the nitrate-reducing bacteria growing with acetate. Type BrG1, BrG2, and BrG3 bacteria accounted for an even smaller fraction (0.2% or less) of the ferrous iron-oxidizing, nitrate-reducing community. The DGGE patterns of MPN cultures suggested that more organisms than those isolated thus far are able to oxidize ferrous iron with nitrate. A comparison showed that among the anoxygenic phototrophic bacteria, organisms that have the ability to oxidize ferrous iron also account for only a minor fraction of the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号