首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most enzymes in the central pathway of carotenoid biosynthesis in plants have been identified and studied at the molecular level. However, the specificity and role of cis-trans-isomerization of carotenoids, which occurs in vivo during carotene biosynthesis, remained unresolved. We have previously cloned from tomato (Solanum lycopersicum) the CrtISO gene, which encodes a carotene cis-trans-isomerase. To study the biochemical properties of the enzyme, we developed an enzymatic in vitro assay in which a purified tomato CRTISO polypeptide overexpressed in Escherichia coli cells is active in the presence of an E. coli lysate that includes membranes. We show that CRTISO is an authentic carotene isomerase. Its catalytic activity of cis-to-trans isomerization requires redox-active components, suggesting that isomerization is achieved by a reversible redox reaction acting at specific double bonds. Our data demonstrate that CRTISO isomerizes adjacent cis-double bonds at C7 and C9 pairwise into the trans-configuration, but is incapable of isomerizing single cis-double bonds at C9 and C9'. We conclude that CRTISO functions in the carotenoid biosynthesis pathway in parallel with zeta-carotene desaturation, by converting 7,9,9'-tri-cis-neurosporene to 9'-cis-neurosporene and 7'9'-di-cis-lycopene into all-trans-lycopene. These results establish that in plants carotene desaturation to lycopene proceeds via cis-carotene intermediates.  相似文献   

2.
Carotenoids are essential photoprotective and antioxidant pigments synthesized by all photosynthetic organisms. Most carotenoid biosynthetic enzymes were thought to have evolved independently in bacteria and plants. For example, in bacteria, a single enzyme (CrtI) catalyzes the four desaturations leading from the colorless compound phytoene to the red compound lycopene, whereas plants require two desaturases (phytoene and zeta-carotene desaturases) that are unrelated to the bacterial enzyme. We have demonstrated that carotenoid desaturation in plants requires a third distinct enzyme activity, the carotenoid isomerase (CRTISO), which, unlike phytoene and zeta-carotene desaturases, apparently arose from a progenitor bacterial desaturase. The Arabidopsis CRTISO locus was identified by the partial inhibition of lutein synthesis in light-grown tissue and the accumulation of poly-cis-carotene precursors in dark-grown tissue of crtISO mutants. After positional cloning, enzymatic analysis of CRTISO expressed in Escherichia coli confirmed that the enzyme catalyzes the isomerization of poly-cis-carotenoids to all-trans-carotenoids. Etioplasts of dark-grown crtISO mutants accumulate acyclic poly-cis-carotenoids in place of cyclic all-trans-xanthophylls and also lack prolamellar bodies (PLBs), the lattice of tubular membranes that defines an etioplast. This demonstrates a requirement for carotenoid biosynthesis to form the PLB. The absence of PLBs in crtISO mutants demonstrates a function for this unique structure and carotenoids in facilitating chloroplast development during the first critical days of seedling germination and photomorphogenesis.  相似文献   

3.
Li F  Murillo C  Wurtzel ET 《Plant physiology》2007,144(2):1181-1189
Carotenoids are a diverse group of pigments found in plants, fungi, and bacteria. They serve essential functions in plants and provide health benefits for humans and animals. In plants, it was thought that conversion of the C40 carotenoid backbone, 15-cis-phytoene, to all-trans-lycopene, the geometrical isomer required by downstream enzymes, required two desaturases (phytoene desaturase and zeta-carotene desaturase [ZDS]) plus a carotene isomerase (CRTISO), in addition to light-mediated photoisomerization of the 15-cis-double bond; bacteria employ only a single enzyme, CRTI. Characterization of the maize (Zea mays) pale yellow9 (y9) locus has brought to light a new isomerase required in plant carotenoid biosynthesis. We report that maize Y9 encodes a factor required for isomerase activity upstream of CRTISO, which we term Z-ISO, an activity that catalyzes the cis- to trans-conversion of the 15-cis-bond in 9,15,9'-tri-cis-zeta-carotene, the product of phytoene desaturase, to form 9,9'-di-cis-zeta-carotene, the substrate of ZDS. We show that recessive y9 alleles condition accumulation of 9,15,9'-tri-cis-zeta-carotene in dark tissues, such as roots and etiolated leaves, in contrast to accumulation of 9,9'-di-cis-zeta-carotene in a ZDS mutant, viviparous9. We also identify a locus in Euglena gracilis, which is similarly required for Z-ISO activity. These data, taken together with the geometrical isomer substrate requirement of ZDS in evolutionarily distant plants, suggest that Z-ISO activity is not unique to maize, but will be found in all higher plants. Further analysis of this new gene-controlled step is critical to understanding regulation of this essential biosynthetic pathway.  相似文献   

4.
Carotenoid isomerase: a tale of light and isomers   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
"zebra" mutants have alternating green and chlorotic crossbands on leaf blades and are widely distributed in monocotyledonous crops. Most recently, we cloned the first responsible gene from rice, ZEBRA2, which also leads to the phenotype of rice preharvest sprouting. ZEBRA2, a single-copy gene in the rice genome, encodes a carotenoid isomerase (CRTISO), the key enzyme catalyzing the conversion of cis-lycopene to all-trans lycopene. ZEBRA2 shares high identity with known CRTISOs from other species. Expression analysis via both RT-PCR and ZEBRA2-promoter-β-glucuronidase (GUS) transgenic rice indicates that ZEBRA2 is predominantly expressed in mesophyll cells of mature leaves where active photosynthesis occurs. Consistent with the alteration in agronomic traits, the zebra2 mutant exhibits decreased photosynthetic rate and chlorophyll content. Mutation of the ZEBRA2 gene results in the accumulation of all-trans-lycopene precursor, prolycopene (7Z,9Z,7'Z,9'Z tetra cis-lycopene), in dark-grown zebra2 tissues. Light-grown zebra2 mutant exhibits the characteristic "zebra" phenotype and decreased level of lutein, the xanthophyll that is essential for efficient chl triplet quenching. More severe phenotype of the zebra2 mutant under high light intensity indicates that "zebra" phenotype might be caused by photooxidative damages. We conclude that ZEBRA2 is involved in photoprotection in rice.  相似文献   

7.
8.
Accumulated in large amounts in carrot, carotenoids are an important product quality attribute and therefore a major breeding trait. However, the knowledge of carotenoid accumulation genetic control in this root vegetable is still limited. In order to identify the genetic variants linked to this character, we performed an association mapping study with a candidate gene approach. We developed an original unstructured population with a broad genetic basis to avoid the pitfall of false positive detection due to population stratification. We genotyped 109 SNPs located in 17 candidate genes – mostly carotenoid biosynthesis genes – on 380 individuals, and tested the association with carotenoid contents and color components. Total carotenoids and β-carotene contents were significantly associated with genes zeaxanthin epoxydase (ZEP), phytoene desaturase (PDS) and carotenoid isomerase (CRTISO) while α-carotene was associated with CRTISO and plastid terminal oxidase (PTOX) genes. Color components were associated most significantly with ZEP. Our results suggest the involvement of the couple PDS/PTOX and ZEP in carotenoid accumulation, as the result of the metabolic and catabolic activities respectively. This study brings new insights in the understanding of the carotenoid pathway in non-photosynthetic organs.  相似文献   

9.
The carotene cis-trans isomerase CRTISO is a constituent of the carotene desaturation pathway as evolved in cyanobacteria and prevailing in plants, in which a tetra-cis-lycopene species, termed prolycopene, is formed. CRTISO, an evolutionary descendant of the bacterial carotene desaturase CRTI, catalyzes the cis-to-trans isomerization reactions leading to all-trans-lycopene, the substrate for the subsequent lycopene cyclization to form all-trans-α/β-carotene. CRTISO and CRTI share a dinucleotide binding motif at the N terminus. Here we report that this site is occupied by FAD in CRTISO. The reduced form of this cofactor catalyzes a reaction not involving net redox changes. Results obtained with C(1)- and C(5)-deaza-FAD suggest mechanistic similarities with type II isopentenyl diphosphate: dimethylallyl diphosphate isomerase (IDI-2). CRTISO, together with lycopene cyclase CRTY and IDI-2, thus represents the third enzyme in isoprenoid metabolism belonging to the class of non-redox enzymes depending on reduced flavin for activity. The regional specificity and the kinetics of the isomerization reaction were investigated in vitro using purified enzyme and biphasic liposome-based systems carrying specific cis-configured lycopene species as substrates. The reaction proceeded from cis to trans, recognizing half-sides of the symmetrical prolycopene and was accompanied by one trans-to-cis isomerization step specific for the C(5)-C(6) double bond. Rice lycopene β-cyclase (OsLCY-b), when additionally introduced into the biphasic in vitro system used, was found to be stereospecific for all-trans-lycopene and allowed the CRTISO reaction to proceed toward completion by modifying the thermodynamics of the overall reaction.  相似文献   

10.
11.
Abscisic acid (ABA) is a sesquiterpene compound (C15) derived from C40 carotenoids. The immediate carotenoid precursors for ABA biosynthesis, 9- cis -violaxanthin and 9'- cis -neoxanthin, are produced from β -carotene by a series of hydroxylation, epoxidation, and isomerization reactions. Carotenoid hydroxylase deficient mutants contain severely reduced levels of violaxanthin and neoxanthin ( < 20% of wild type level) and provide a unique system to correlate carotenoid substrate availability and ABA production in photosynthetic tissues under non-stressed conditions. Quantitative measurements indicated that ABA levels in the carotenoid hydroxylase mutants are reduced nearly 50% compared to the wild type plants under non-stressed conditions. When drought-stressed, wild type plants showed up to a 17-fold increase in ABA levels, while ABA levels in the carotenoid hydroxylase mutants were only increased 6- to 7-fold (25% of wild type drought-stressed ABA levels). Expression of AtNCED3 ( Arabidopsis thaliana nine- cis -epoxycarotenoid dioxygenase 3, the rate-limiting activity for ABA biosynthesis) was induced in the carotenoid hydroxylase mutants, but to a lesser extent than the 40-fold increase in wild type plants. Therefore, the reduced ABA accumulation in response to drought-stress is at least partially due to the attenuated increase in AtNCED3 gene expression in the carotenoid hydroxylase mutants. The remaining violaxanthin and neoxanthin in the carotenoid hydroxylase mutants can not be converted into ABA, indicating that there is probably a separate pool of violaxanthin and neoxanthin that is not accessible to the cleavage enzymes, because it is sequestered in the light-harvesting complexes.  相似文献   

12.
Transgenic tomato plants expressing antisense RNA to a ripening-related cDNA clone (pTOM5) had yellow ripening fruit and pale coloured flowers. Carotenoid levels in fruit of these plants were reduced by up to 97%. In order to determine the step of carotenoid biosynthesis which was blocked, a cell-free system active in the synthesis of carotenoid intermediates was prepared. Incubations with radiolabelled carotenoid precursors led to the identification of the block between GGDP and phytoene. Analysis of carotenoids in different tissues of transgenic and control plants indicated that although ripe fruit and flower carotenoid levels were reduced in the modified plants, leaf carotenoid levels were not decreased. This implies that the pTOM5 gene product is not involved in carotenoid synthesis in the leaf.  相似文献   

13.
Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme taxadiene synthase (which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis.  相似文献   

14.
Plant isoprenoids represent a heterogeneous group of compounds which play essential roles not only in growth and development, but also in the interaction of plants with their environment. Higher plants contain two pathways for the biosynthesis of isoprenoids: the mevalonate pathway, located in the cytosol/endoplasmic reticulum, and the recently discovered mevalonate-independent pathway (Rohmer pathway), located in the plastids. In order to evaluate the function of the Rohmer pathway in the regulation of the synthesis of plastidial isoprenoids, we have isolated a tomato cDNA encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS), the first enzyme of the pathway. We demonstrate in vivo activity and plastid targeting of plant DXS. Expression analysis of the tomato DXS gene indicates developmental and organ-specific regulation of mRNA accumulation and a strong correlation with carotenoid synthesis during fruit development. 1-Deoxy-D-xylulose feeding experiments, together with expression analysis of DXS and PSY1 (encoding the fruit-specific isoform of phytoene synthase) in wild-type and yellow flesh mutant fruits, indicate that DXS catalyses the first potentially regulatory step in carotenoid biosynthesis during early fruit ripening. Our results change the current view that PSY1 is the only regulatory enzyme in tomato fruit carotenogenesis, and point towards a coordinated role of both DXS and PSY1 in the control of fruit carotenoid synthesis.  相似文献   

15.
16.
17.
Retinoids carry out essential functions in vertebrate development and vision. Many of the retinoid processing enzymes remain to be identified at the molecular level. To expand the knowledge of retinoid biochemistry in vertebrates, we studied the enzymes involved in plant metabolism of carotenoids, a related group of compounds. We identified a family of vertebrate enzymes that share significant similarity and a putative phytoene desaturase domain with a recently described plant carotenoid isomerase (CRTISO), which isomerizes prolycopene to all-trans-lycopene. Comparison of heterologously expressed mouse and plant enzymes indicates that unlike plant CRTISO, the CRTISO-related mouse enzyme is inactive toward prolycopene. Instead, the CRTISO-related mouse enzyme is a retinol saturase carrying out the saturation of the 13-14 double bond of all-trans-retinol to produce all-trans-13,14-dihydroretinol. The product of mouse retinol saturase (RetSat) has a shifted UV absorbance maximum, lambda(max) = 290 nm, compared with the parent compound, all-trans-retinol (lambda(max) = 325 nm), and its MS analysis (m/z = 288) indicates saturation of a double bond. The product was further identified as all-trans-13,14-dihydroretinol, since its characteristics were identical to those of a synthetic standard. Mouse RetSat is membrane-associated and expressed in many tissues, with the highest levels in liver, kidney, and intestine. All-trans-13,14-dihydroretinol was also detected in several tissues of animals maintained on a normal diet. Thus, saturation of all-trans-retinol to all-trans-13,14-dihydroretinol by RetSat produces a new metabolite of yet unknown biological function.  相似文献   

18.
Colliver  S.  Bovy  A.  Collins  G.  Muir  S.  Robinson  S.  de Vos  C.H.R.  Verhoeyen  M.E. 《Phytochemistry Reviews》2002,1(1):113-123
Flavonoids are a diverse group of phenolic secondary metabolites that occur naturally in plants and therefore form an integral component of the human diet. Many of the compounds belonging to this group are potent antioxidants in vitro and epidemiological studies suggest a direct correlation between high flavonoid intake and decreased risk of cardiovascular disease, cancer and other age-related diseases. Modifying flavonoid biosynthesis in chosen crops may provide new raw materials that have the potential to be used in foods designed for specific benefits to human health. We report that flavonoid biosynthesis in tomato fruit is subject to tissue specific and developmental regulation. Using transgenic modification, we have investigated the role of several of the enzymatic steps of tomato flavonol biosynthesis. Furthermore, we have generated several tomato lines with significantly altered flavonoid content. Most notably achieving an up to 78-fold increase in total fruit flavonols through ectopic expression of the biosynthetic enzyme, chalcone isomerase. This increase results principally from the accumulation of quercetin-glycosides in peel tissue. In addition, we report that chalcone synthase and flavonol synthase transgenes act synergistically to significantly up-regulate flavonol biosynthesis in tomato flesh tissues. A review of this work is presented in this paper.  相似文献   

19.
Flavonoids are a diverse group of phenolic secondary metabolites that occur naturally in plants and therefore form an integral component of the human diet. Many of the compounds belonging to this group are potent antioxidants in vitro and epidemiological studies suggest a direct correlation between high flavonoid intake and decreased risk of cardiovascular disease, cancer and other age-related diseases. Enhancing flavonoid biosynthesis in chosen crops may provide new raw materials that have the potential to be used in foods designed for specific benefits to human health. Using genetic modification, it was possible to generate several tomato lines with significantly altered flavonoid content and to probe the role and importance of several key enzymatic steps in the tomato flavonoid biosynthetic pathway. Most notably an up to 78-fold increase in total fruit flavonols was achieved through ectopic expression of a single biosynthetic enzyme, chalcone isomerase. In addition, chalcone synthase and flavonol synthase transgenes were found to act synergistically to up-regulate flavonol biosynthesis significantly in tomato flesh tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号