首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
For the production of broad commercial resistance to cucumber mosaic virus (CMV) infection, tomato plants were transformed with a combination of two coat protein (CP) genes, representing both subgroups of CMV. The CP genes were cloned from the CMV-D strain and Italian CMV isolates (CMV-22 of subgroup I and CMV-PG of subgroup II) which have been shown to produce severe disease symptoms. Four plant transformation vectors were constructed: pMON18774 and pMON18775 (CMV-D CP), pMON18831 (CMV-PG CP) and pMON18833 (CMV-22 CP and CMV-PG CP). Transformed R0 plants were produced and lines were selected based on the combination of three traits: CMV CP expression at the R0 stage, resistance to CMV (subgroup I and/or II) infection in growth chamber tests in R1 expressing plants, and single transgene copy, based on R1 segregation. The results indicate that all four vector constructs generated plants with extremely high resistant to CMV infection. The single and double gene vector construct produced plants with broad resistance against strains of CMV from both subgroups I and II at high frequency. The engineered resistance is of practical value and will be applied for major Italian tomato varieties. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The coat protein (CP)-mediated resistance against Cucumber mosaic virus (CMV) subgroup IA was developed in transgenic lines of Nicotiana tabacum cv. Petit Havana using Agrobacterium tumefaciens-mediated transformation. Ten independently transformed lines have developed, four of which were tested for resistance against CMV using virus challenge inoculations. The transgenic lines exhibiting complete resistance remained healthy and symptomless in their life span and showed reduced or no virus accumulation in their systemic leaves after virus challenge inoculation. These transgenic lines also showed resistance against CMV strains which are not closely related to CMV-Gladiolus strains. This is the first report of CP-mediated transgenic resistance against a CMV subgroup IA member isolated from India showing resistance to all CMV strains occurring in the same vicinity.  相似文献   

6.
Transgenic pepper plants coexpressing coat proteins (CPs) of cucumber mosaic virus (CMV-Kor) and tomato mosaic virus (ToMV) were produced by Agrobacterium-mediated transformation. To facilitate selection for positive transformants in transgenic peppers carrying an L gene, we developed a simple and effective screening procedure using hypersensitive response upon ToMV challenge inoculation. In this procedure, positive transformants could be clearly differentiated from the nontransformed plants. Transgenic pepper plants expressing the CP genes of both viruses were tested for resistance against CMV-Kor and pepper mild mottle virus (PMMV). In most transgenic plants, viral propagation was substantially retarded when compared to the nontransgenic plants. These experiments demonstrate that our transgenic pepper plants might be a useful marker system for the transgene screening and useful for classical breeding programs of developing virus resistant hot pepper plants.  相似文献   

7.
8.
A search was conducted to detect evidence for interactions between potato leafroll virus (PLRV)-derived transgenes expressed in Russet Burbank potato and viruses to which the transgenic plants were exposed and by which they were infected. More than 25000 plants in 442 lines transformed with 16 different coat protein gene (CP) constructs and nearly 40000 plants in 512 lines transformed with seven different replicase gene (Rep) constructs of PLRV were exposed to field infection over a 6-year period. These plants were individually inspected for type and severity of virus symptoms. Heterologous viruses found infecting the plants were identified and examined for alterations in transmission characteristics, serological affinity, host range, and symptoms. Selected isolates of PLRV from field-infected plants were examined for unusual symptoms produced in diagnostic hosts and for alteration in sedimentation properties in density gradient tubes. Viruses that were propagated in selected transgenic lines in a greenhouse were examined for similar alterations. Transmission characteristics and serological properties were not altered when they replicated in potatoes containing CP constructs in the field or greenhouse. Potato plants expressing CP or Rep constructs of PLRV were not infected in the field or in the greenhouse with viruses that do not normally infect potato. New viruses or viruses with altered sedimentation characteristics, symptoms, or host range were not detected in field-exposed or greenhouse-inoculated potato plants expressing CP or Rep gene constructs of PLRV.  相似文献   

9.
The 3′‐terminal sequences (c. 1700 nt) of the RNA genome of 10 Turnip mosaic virus (TuMV) isolates from different hosts in Zhejiang province, China, were determined. Phylogenetic analysis of the coat protein nucleotide sequences revealed that most TuMV sequences fell into two distinct clusters. The Chinese isolates B1‐B4 (from Brassica spp.) were similar and placed in the largest group (Group 1), while the isolates R1‐R6 (from Raphanus) were usually placed in a distinct but smaller group (Group 2). There were only approximately 90% identical nucleotides between the two groups. However, one isolate (R5) showed evidence of recombination in that the region between nucleotides 430 and 450, from the start of the coat protein gene and its 3′‐terminus, was a Group 1 type.  相似文献   

10.
Tobacco plants expressing a transgene encoding the coat protein (CP) of a subgroup I strain of cucumber mosaic cucumovirus (CMV), I17F, were not resistant to strains of either subgroup I or II. In contrast, the expression of the CP of a subgroup II strain, R, conferred substantial resistance, but only towards strains of the same subgroup. When protection was observed, the levels of resistance were similar when plants were inoculated with either virions or viral RNA, but resistance was more effective when plants were inoculated with viruliferous aphids. Resistance was not dependent on inoculum strength and was expressed as a recovery phenotype not yet described for plants expressing a CMV CP gene. Recovery could be observed either early in infection (less than one week after inoculation) or later (4 to 5 weeks after inoculation). In plants showing early recovery, mild symptoms were observed on the inoculated leaves, and in some cases symptoms developed on certain lower systemically infected leaves, but the upper leaves were symptomless and virus-free. Late recovery corresponded to the absence of both symptoms and virus in the upper leaves of plants that were previously fully infected. Northern blot analyses of resistant plants suggested that a gene silencing mechanism was not involved in the resistance observed.  相似文献   

11.
Musa landraces (469) from 73 villages in 10 states in 1999, 2000 and 2004 in southern Nigeria were visually assessed to determine virus symptoms associated with CMV disease. CMV indexing was done using dot-blot immunoassay and ELISA. Monoclonal antibodies were used to group CMV isolates in 2004. Symptoms of interveinal chlorosis and chlorotic streaks were observed in 22.4 and 17.9% of the Musa samples with CMV disease incidences of 17.1% and 14.7%, respectively. Other virus symptoms accounted for between 1.5 and 12.2% of the total leaf samples while 13.9% were asymptomatic. CMV incidence in asymptomatic leaf samples was as high as 10.4% while the virus incidence in the other symptom types were between 0.9 and 7.9%. The incidences of CMV in both the symptomatic and asymptomatic plants in 1999, 2000 and 2004 were between 1.3 and 18.7%, 1.9 and 26.9% and 4.9 and 26.4%, respectively.  相似文献   

12.
香蕉花叶病毒外壳蛋白基因克隆及表达载体的构建   总被引:4,自引:0,他引:4  
从海南大田感染香蕉花叶病的香蕉叶片 ,获得香蕉花叶病毒 ,提纯其 RNA,在 AMV反转录酶作用下合成 c DNA第一链 ,经 PCR扩增 ,获得一约 70 0 bp的 DNA片段 ,测序结果显示所克隆的 DNA片段包含一完整的香蕉花叶病毒株系 ( CMV-BHI)外壳蛋白基因 ,长度为 6 5 7bp,然后将此 DNA片段 ,分别克隆到p BI1 2 1和 p KHG4质粒 ,构成两个含 Ca MV35 s启动子 ( 5 '-端 )、NOS终止子 ( 3'-端 )和分别含 NPT 标记基因和 NPT 及 HPT标记基因的植物表达载体 ( p TBB和 p TBK)。然后用 p AHC1 8中的 UBI promoter换下p BI1 2 1的 Ca MV35 s promoter,构成 p BIAH;再用 CMV-BHI外壳蛋白基因换下 p BIAH中 GUS基因 ,构成一含单子叶植物启动子 UBI和 NPT 标记基因的植物表达载体 ( p TBBU)。从而为 CMV-BHI外壳蛋白基因在香蕉中表达打下了基础  相似文献   

13.
14.
A procedure for the fast production of homozygotic transgenic plants was developed. Leaf discs of haploid tobacco plants from anther cultures were transformed with a chimaeric vector containing coat protein (CP) and satellite RNA (Sat-RNA) genes from cucumber mosaic virus (CMV). One-hundred-and-twelve Kanamycin-resistant transformed haploid plants were subjected to selection based on the expression of both CP and Sat-RNA. Eighty-nine transgenic plants expressing both genes were selected and tested for their resistance to CMV by inoculation with high concentration of CMV (200 g ml–1). Only five plants showed no symptoms of viral infection 30 days after inoculation. These plants were then diploidized by colchicine treatment. Three homozygous diploid lines with high levels of resistance to CMV were obtained after only one generation. The three transgenic lines were further tested under field conditions. The results showed that the progenies of these transgenic lines were homozygous and were highly resistant to CMV under natural field infection and manual inoculation conditions.  相似文献   

15.
Cauliflower mosaic virus (CaMV) with a high incidence and widespread distribution on Brassica crops in Iran reduces the yield and quality of these crops. The complete sequences of three open reading frames (ORFs) 2, 4 and 6 coding for aphid transmission (AT), coat protein (CP) and inclusion body protein/translation transactivator (TAV) genes, respectively, were determined for two Iranian CaMV isolates from Kerman (south Iran). They induced latent or mild mottle (L/MMo) infection in Brassica oleracea var. capitata so are considered as the (L/MMo) biotype. Clear recombination breakpoints were detected between ORF2 and ORF6 in two Kerman isolates using concatenate fragments. Phylogenetic analysis revealed three Iranian CaMV subpopulations in which the two Kerman isolates in the new subgroup C were added to the two previously reported Iranian subpopulations A (central and west Iran) and B (north‐east Iran). Also three regions of pairwise identity were detected which representing: 97.1–100, 93.8–97.1 and 90.6–93.8% for subgroups A, C and B, respectively. Our analysis showed the high variability of Iranian CaMV population and provided valuable new information for understanding the diversity and evolution of caulimoviruses. Furthermore, star phylogeny was found in the subgroup C with overall lack of nt diversity and high haplotype diversity as evidence of a recent population expansion after a genetic bottleneck although this may have been modified subsequently by clinal genetic drift. The appearance of new genetic types demonstrates a high potential of risks and should be considered in the planning of efficient control programmes.  相似文献   

16.
17.
Transgenic lines of subterranean clover were constructed that contained three different Bean yellow mosaic virus (BYMV) coat protein (CP) gene constructs; full-length CP, the core region of the CP, and full-length CP plus the 3′ untranslated region of the viral genome. Transgenic plants containing the full-length and core CP gene constructs showed high and moderate levels of BYMV resistance. Resistance was measured as a lack or amelioration of viral disease symptoms, which was correlated with a reduction in virus levels and yield loss. A range of different resistance phenotypes was observed. They included reduced infection rates, delay and reduction in local lesion development, and delay and reduction in severity of systemic symptom development. Resistance levels were not correlated with transgene mRNA levels and no transgene-encoded protein was detected in any of the transgenic lines. This is the first example of genetically engineered virus resistance in a clover.  相似文献   

18.
Thehypersensitiveresponse(HR)isoneofmostextensivelystudiedresistantreactionsdur-ingtheincompatibleinteractionbetweenplantandpathogen.Inthisprocess,plantinitiatesdiversedefensesystemssuchasdepositionofligninandcalloseinthecellwall,productionofphytoalex-ins,expressionofpathogenesis-relatedproteins(PRprotein)andactivationofprogrammedcelldeath(PCD),whichresultinlimitationofthepathogenwithintheinitialinfectionsites[1,2].TheHRinducedbybacteria,fungiandvirusesusuallyactivatesasystemicacquiredresis…  相似文献   

19.
20.
Structural changes in the single-stranded genome RNAs (RNAs 1, 2 and 3) and the subgenomic coat protein messenger (RNA 4) of alfalfa mosaic virus upon addition of a few coat protein molecules of the virus were investigated by measuring the fluorescent intensity of bound ethidium bromide and by circular dichroism. No effect could be observed in the case of the genome RNAs. However, in RNA 4, which is of much less complexity than the genome RNAs, a reduction of the ethidium bromide binding by 30% was found, whereas the positive molar ellipticity at 265 nm was reduced by 9% upon binding of the coat protein. Both changes point to a reduction of the ordered structure of the RNA. Since the protein is known to bind first at the 3′-terminus of RNA 4 and probably also of the genome RNAs, the conformational changes observed could be those thought to be necessary for replicase recognition in this positive-stranded RNA virus which needs the coat protein for starting an infection cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号