首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5′ 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5′ and 3′ sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ.  相似文献   

2.
Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2' hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem-loops, extensive long-range interactions (LRIs) and a small, palindromic stem-loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem-loops are static structures, the 5' and 3' regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem-loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.  相似文献   

3.

Background

This study mapped regions of genomic RNA (gRNA) important for packaging and propagation of mouse mammary tumor virus (MMTV). MMTV is a type B betaretrovirus which preassembles intracellularly, a phenomenon distinct from retroviruses that assemble the progeny virion at cell surface just before budding such as the type C human and feline immunodeficiency viruses (HIV and FIV). Studies of FIV and Mason-Pfizer monkey virus (MPMV), a type D betaretrovirus with similar intracellular virion assembly processes as MMTV, have shown that the 5′ untranslated region (5′ UTR) and 5′ end of gag constitute important packaging determinants for gRNA.

Methodology

Three series of MMTV transfer vectors containing incremental amounts of gag or 5′ UTR sequences, or incremental amounts of 5′ UTR in the presence of 400 nucleotides (nt) of gag were constructed to delineate the extent of 5′ sequences that may be involved in MMTV gRNA packaging. Real time PCR measured the packaging efficiency of these vector RNAs into MMTV particles generated by co-transfection of MMTV Gag/Pol, vesicular stomatitis virus envelope glycoprotein (VSV-G Env), and individual transfer vectors into human 293T cells. Transfer vector RNA propagation was monitored by measuring transduction of target HeLaT4 cells following infection with viral particles containing a hygromycin resistance gene expression cassette on the packaged RNA.

Principal Findings

MMTV requires the entire 5′ UTR and a minimum of ∼120 nucleotide (nt) at the 5′ end of gag for not only efficient gRNA packaging but also propagation of MMTV-based transfer vector RNAs. Vector RNAs without the entire 5′ UTR were defective for both efficient packaging and propagation into target cells.

Conclusions/Significance

These results reveal that the 5′ end of MMTV genome is critical for both gRNA packaging and propagation, unlike the recently delineated FIV and MPMV packaging determinants that have been shown to be of bipartite nature.  相似文献   

4.
The packaging signal (ψ) of human immunodeficiency virus type 2 (HIV-2) is present in the 5′ noncoding region of RNA and contains a 10-nucleotide palindrome (pal; 5′-392-GGAGUGCUCC) located upstream of the dimerization signal stem-loop 1 (SL1). pal has been shown to be functionally important in vitro and in vivo. We previously showed that the 3′ side of pal (GCUCC-3′) is involved in base-pairing interactions with a sequence downstream of SL1 to make an extended SL1, which is important for replication in vivo and the regulation of dimerization in vitro. However, the role of the 5′ side of pal (5′-GGAGU) was less clear. Here, we characterized this role using an in vivo SELEX approach. We produced a population of HIV-2 DNA genomes with random sequences within the 5′ side of pal and transfected these into COS-7 cells. Viruses from COS-7 cells were used to infect C8166 permissive cells. After several weeks of serial passage in C8166 cells, surviving viruses were sequenced. On the 5′ side of pal there was a striking convergence toward a GGRGN consensus sequence. Individual clones with consensus and nonconsensus sequences were tested in infectivity and packaging assays. Analysis of individuals that diverged from the consensus sequence showed normal viral RNA and protein synthesis but had replication defects and impaired RNA packaging. These findings clearly indicate that the GGRG motif is essential for viral replication and genomic RNA packaging.  相似文献   

5.
Clinical usage of lentiviral vectors is now established and increasing but remains constrained by vector titer with RNA packaging being a limiting factor. Lentiviral vector RNA is packaged through specific recognition of the packaging signal on the RNA by the viral structural protein Gag. We investigated structurally informed modifications of the 5′ leader and gag RNA sequences in which the extended packaging signal lies, to attempt to enhance the packaging process by facilitating vector RNA dimerization, a process closely linked to packaging. We used in-gel SHAPE to study the structures of these mutants in an attempt to derive structure-function correlations that could inform optimized vector RNA design. In-gel SHAPE of both dimeric and monomeric species of RNA revealed a previously unreported direct interaction between the U5 region of the HIV-1 leader and the downstream gag sequences. Our data suggest a structural equilibrium exists in the dimeric viral RNA between a metastable structure that includes a U5–gag interaction and a more stable structure with a U5–AUG duplex. Our data provide clarification for the previously unexplained requirement for the 5′ region of gag in enhancing genomic RNA packaging and provide a basis for design of optimized HIV-1 based vectors.  相似文献   

6.
In addition to genomic RNA, HIV-1 particles package cellular and spliced viral RNAs. In order to determine the encapsidation mechanisms of these RNAs, we determined the packaging efficiencies and specificities of genomic RNA, singly and fully spliced HIV mRNAs and different host RNAs species: 7SL RNA, U6 snRNA and GAPDH mRNA using RT-QPCR. Except GAPDH mRNA, all RNAs are selectively encapsidated. Singly spliced RNAs, harboring the Rev-responsible element, and fully spliced viral RNAs, which do not contain this motif, are enriched in virions to similar levels, even though they are exported from the nucleus by different routes. Deletions of key motifs (SL1 and/or SL3) of the packaging signal of genomic RNA indicate that HIV and host RNAs are encapsidated through independent mechanisms, while genomic and spliced viral RNA compete for the same trans-acting factor due to the presence of the 5′ common exon containing the TAR, poly(A) and U5-PBS hairpins. Surprisingly, the RNA dimerization initiation site (DIS/SL1) appears to be the main packaging determinant of genomic RNA, but is not involved in packaging of spliced viral RNAs, suggesting a functional interaction with intronic sequences. Active and selective packaging of host and spliced viral RNAs provide new potential functions to these RNAs in the early stages of the virus life cycle.  相似文献   

7.
Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3′ end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies.  相似文献   

8.
Rotaviruses are a major cause of acute, often fatal, gastroenteritis in infants and young children world-wide. Virions contain an 11 segment double-stranded RNA genome. Little is known about the cis-acting sequences and structural elements of the viral RNAs. Using a database of 1621 full-length sequences of mammalian group A rotavirus RNA segments, we evaluated the codon, sequence and RNA structural conservation of the complete genome. Codon conservation regions were found in eight ORFs, suggesting the presence of functional RNA elements. Using ConStruct and RNAz programmes, we identified conserved secondary structures in the positive-sense RNAs including long-range interactions (LRIs) at the 5′ and 3′ terminal regions of all segments. In RNA9, two mutually exclusive structures were observed suggesting a switch mechanism between a conserved terminal LRI and an independent 3′ stem–loop structure. In RNA6, a conserved stem–loop was found in a region previously reported to have translation enhancement activity. Biochemical structural analysis of RNA11 confirmed the presence of terminal LRIs and two internal helices with high codon and sequence conservation. These extensive in silico and in vitro analyses provide evidence of the conservation, complexity, multi-functionality and dynamics of rotavirus RNA structures which likely influence RNA replication, translation and genome packaging.  相似文献   

9.
Mosquito-borne flaviviruses (MBFVs) including dengue, West Nile, yellow fever, and Zika viruses have an RNA genome encoding one open reading frame flanked by 5′ and 3′ untranslated regions (UTRs). The 3′ UTRs of MBFVs contain regions of high sequence conservation in structured RNA elements known as dumbbells (DBs). DBs regulate translation and replication of the viral RNA genome, functions proposed to depend on the formation of an RNA pseudoknot. To understand how DB structure provides this function, we solved the x-ray crystal structure of the Donggang virus DB to 2.1Å resolution and used structural modeling to reveal the details of its three-dimensional fold. The structure confirmed the predicted pseudoknot and molecular modeling revealed how conserved sequences form a four-way junction that appears to stabilize the pseudoknot. Single-molecule FRET suggests that the DB pseudoknot is a stable element that can regulate the switch between translation and replication during the viral lifecycle by modulating long-range RNA conformational changes.  相似文献   

10.
The RNA genome of the hepatitis C virus (HCV) contains multiple conserved structural cis domains that direct protein synthesis, replication, and infectivity. The untranslatable regions (UTRs) play essential roles in the HCV cycle. Uncapped viral RNAs are translated via an internal ribosome entry site (IRES) located at the 5′ UTR, which acts as a scaffold for recruiting multiple protein factors. Replication of the viral genome is initiated at the 3′ UTR. Bioinformatics methods have identified other structural RNA elements thought to be involved in the HCV cycle. The 5BSL3.2 motif, which is embedded in a cruciform structure at the 3′ end of the NS5B coding sequence, contributes to the three-dimensional folding of the entire 3′ end of the genome. It is essential in the initiation of replication. This paper reports the identification of a novel, strand-specific, long-range RNA–RNA interaction between the 5′ and 3′ ends of the genome, which involves 5BSL3.2 and IRES motifs. Mutants harboring substitutions in the apical loop of domain IIId or in the internal loop of 5BSL3.2 disrupt the complex, indicating these regions are essential in initiating the kissing interaction. No complex was formed when the UTRs of the related foot and mouth disease virus were used in binding assays, suggesting this interaction is specific for HCV sequences. The present data firmly suggest the existence of a higher-order structure that may mediate a protein-independent circularization of the HCV genome. The 5′–3′ end bridge may have a role in viral translation modulation and in the switch from protein synthesis to RNA replication.  相似文献   

11.
The influenza A virus genome consists of eight negative-sense RNA segments that must each be packaged to produce an infectious virion. We have previously mapped the minimal cis-acting regions necessary for efficient packaging of the PA, PB1, and PB2 segments, which encode the three protein subunits of the viral RNA polymerase. The packaging signals in each of these RNAs lie within two separate regions at the 3′ and 5′ termini, each encompassing the untranslated region and extending up to 80 bases into the adjacent coding sequence. In this study, we introduced scanning mutations across the coding regions in each of these RNA segments in order to finely define the packaging signals. We found that mutations producing the most severe defects were confined to a few discrete 5′ sites in the PA or PB1 coding regions but extended across the entire (80-base) 5′ coding region of PB2. In sequence comparisons among more than 580 influenza A strains from diverse hosts, these highly deleterious mutations were each found to affect one or more conserved bases, though they did not all lie within the most broadly conserved portions of the regions that we interrogated. We have introduced silent and conserved mutations to the critical packaging sites, which did not affect protein function but impaired viral replication at levels roughly similar to those of their defects in RNA packaging. Interestingly, certain mutations showed strong tendencies to revert to wild-type sequences, which implies that these putative packaging signals are critical for the influenza life cycle.  相似文献   

12.
13.
Encapsidation of retroviral RNA involves specific interactions between viral proteins and cis-acting genomic RNA sequences. Human immunodeficiency virus type 1 (HIV-1) RNA encapsidation determinants appear to be more complex and dispersed than those of murine retroviruses. Feline lentiviral (feline immunodeficiency virus [FIV]) encapsidation has not been studied. To gain comparative insight into lentiviral encapsidation and to optimize FIV-based vectors, we used RNase protection assays of cellular and virion RNAs to determine packaging efficiencies of FIV deletion mutants, and we studied replicative phenotypes of mutant viruses. Unlike the case for other mammalian retroviruses, the sequences between the major splice donor (MSD) and the start codon of gag contribute negligibly to FIV encapsidation. Moreover, molecular clones having deletions in this region were replication competent. In contrast, sequences upstream of the MSD were important for encapsidation, and deletion of the U5 element markedly reduced genomic RNA packaging. The contribution of gag sequences to packaging was systematically investigated with subgenomic FIV vectors containing variable portions of the gag open reading frame, with all virion proteins supplied in trans. When no gag sequence was present, packaging was abolished and marker gene transduction was absent. Inclusion of the first 144 nucleotides (nt) of gag increased vector encapsidation to detectable levels, while inclusion of the first 311 nt increased it to nearly wild-type levels and resulted in high-titer FIV vectors. However, the identified proximal gag sequence is necessary but not sufficient, since viral mRNAs that contain all coding regions, with or without as much as 119 nt of adjacent upstream 5' leader, were excluded from encapsidation. The results identify a mechanism whereby FIV can encapsidate its genomic mRNA in preference to subgenomic mRNAs.  相似文献   

14.
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.  相似文献   

15.
Subdomain 5BSL3.2 of hepatitis C virus RNA lies at the core of a network of distal RNA–RNA contacts that connect the 5′ and 3′ regions of the viral genome and regulate the translation and replication stages of the viral cycle. Using small-angle X-ray scattering and NMR spectroscopy experiments, we have determined at low resolution the structural models of this subdomain and its distal complex with domain 3′X, located at the 3′-terminus of the viral RNA chain. 5BSL3.2 adopts a characteristic ‘L’ shape in solution, whereas the 5BSL3.2–3′X distal complex forms a highly unusual ‘Y’-shaped kissing junction that blocks the dimer linkage sequence of domain 3′X and promotes translation. The structure of this complex may impede an effective association of the viral polymerase with 5BSL3.2 and 3′X to start negative-strand RNA synthesis, contributing to explain the likely mechanism used by these sequences to regulate viral replication and translation. In addition, sequence and shape features of 5BSL3.2 are present in functional RNA motifs of flaviviruses, suggesting conserved regulatory processes within the Flaviviridae family.  相似文献   

16.
APOBEC3G (APO3G) is a host cytidine deaminase that is incorporated into human immunodeficiency virus type 1 (HIV-1) particles. We report here that viral RNA promotes stable association of APO3G with HIV-1 nucleoprotein complexes (NPC). A target sequence located within the 5′-untranslated region of the HIV-1 RNA was identified to be necessary and sufficient for efficient APO3G packaging. Fine mapping revealed a sequence normally involved in viral genomic RNA dimerization and Gag binding to be important for APO3G packaging and association with viral NPC. Our data suggest that packaging of APO3G into HIV-1 NPC is enhanced by viral RNA.  相似文献   

17.
This study was undertaken to address the role of feline immunodeficiency virus (FIV) long terminal repeats (LTR) as potential packaging determinants. A number of studies in the recent past have clearly demonstrated that the core packaging determinants of FIV reside within at least two distinct regions at the 5' end of the viral genome, from R in the 5' LTR to approximately 150 bp within the 5' untranslated region (5' UTR) and within the first 100 bp of gag; however, there have been conflicting observations as to the role of the LTR regions in packaging and whether they contain the principal packaging determinants of FIV. Using a semi-quantitative RT-PCR approach on heterologous non-viral vector RNAs in an in vivo packaging assay, this study demonstrates that the principal packaging determinants of FIV reside within the first 150 bp of 5' UTR and 100 bp of gag (the two core regions) and not the viral 5' LTR. Furthermore, it shows that in addition to the 5' LTR, the 3' LTR also contains packaging determinants, but of a less significant nature compared to the core packaging determinants. This study defines the relative contribution of the various regions implicated in FIV genomic RNA packaging, and reveals that like other primate lentiviruses, the packaging determinants of FIV are multipartite and spread out, an observation that has implications for safer and more streamlined design of FIV-based gene transfer vectors.  相似文献   

18.
The 5′ end of the genomic RNA of rubella virus (RUB) contains a 14-nucleotide (nt) single-stranded leader (ss-leader) followed by a stem-and-loop structure [5′(+)SL] (nt 15 to 65), the complement of which at the 3′ end of the minus-strand RNA [3′(−)SL] has been proposed to function as a promoter for synthesis of genomic plus strands. A second intriguing feature of the 5′ end of the RUB genomic RNA is the presence of a short (17 codons) open reading frame (ORF) located between nt 3 and 54; the ORF encoding the viral nonstructural proteins (NSPs) initiates at nt 41 in an alternate translational frame. To address the functional significance of these features, we compared the 5′-terminal sequences of six different strains of RUB, with the result that the short ORF is preserved (although the coding sequence is not conserved) as is the stem part of both the 5′(+)SL and 3′(−)SL, while the upper loop part of both structures varies. Next, using Robo302, an infectious cDNA clone of RUB, we introduced 31 different mutations into the 5′-terminal noncoding region, and their effects on virus replication and macromolecular synthesis were examined. This mutagenesis revealed that the short ORF is not essential for virus replication. The AA dinucleotide at nt 2 and 3 is of critical importance since point mutations and deletions that altered or removed both of these nucleotides were lethal. None of the other mutations within either the ss-leader or the 5′(+)SL [and accordingly within the 3′(−)SL], including deletions of up to 15 nt from the 5′(+)SL and three different multiple-point mutations that lead to destabilization of the 5′(+)SL, were lethal. Some of the mutations within both ss-leader and the 5′(+)SL resulted in viruses that grew to lower titers than the wild-type virus and formed opaque and/or small plaques; in general mutations within the stem had a more profound effect on viral phenotype than did mutations in either the ss-leader or upper loop. Mutations in the 5′(+)SL, but not in the ss-leader, resulted in a significant reduction in NSP synthesis, indicating that this structure is important for efficient translation of the NSP ORF. In contrast, viral plus-strand RNA synthesis was unaffected by the 5′(+)SL mutations as well as the ss-leader mutations, which argues against the proposed function of the 3′(−)SL as a promoter for initiation of the genomic plus-strand RNA.  相似文献   

19.
Song BH  Yun SI  Choi YJ  Kim JM  Lee CH  Lee YM 《RNA (New York, N.Y.)》2008,14(9):1791-1813
Tertiary or higher-order RNA motifs that regulate replication of positive-strand RNA viruses are as yet poorly understood. Using Japanese encephalitis virus (JEV), we now show that a key element in JEV RNA replication is a complex RNA motif that includes a string of three discontinuous complementary sequences (TDCS). The TDCS consists of three 5-nt-long strands, the left (L) strand upstream of the translation initiator AUG adjacent to the 5′-end of the genome, and the middle (M) and right (R) strands corresponding to the base of the Flavivirus-conserved 3′ stem–loop structure near the 3′-end of the RNA. The three strands are arranged in an antiparallel configuration, with two sets of base-pairing interactions creating L-M and M-R duplexes. Disrupting either or both of these duplex regions of TDCS completely abolished RNA replication, whereas reconstructing both duplex regions, albeit with mutated sequences, fully restored RNA replication. Modeling of replication-competent genomes recovered from a large pool of pseudorevertants originating from six replication-incompetent TDCS mutants suggests that both duplex base-pairing potentials of TDCS are required for RNA replication. In all cases, acquisition of novel sequences within the 3′M-R duplex facilitated a long-range RNA–RNA interaction of its 3′M strand with either the authentic 5′L strand or its alternative (invariably located upstream of the 5′ initiator), thereby restoring replicability. We also found that a TDCS homolog is conserved in other flaviviruses. These data suggest that two duplex base-pairings defined by the TDCS play an essential regulatory role in a key step(s) of Flavivirus RNA replication.  相似文献   

20.
The 3′-terminal nucleotides (nt) of West Nile virus (WNV) genomic RNA form a penultimate 16-nt small stem-loop (SSL) and an 80-nt terminal stem-loop (SL). These RNA structures are conserved in divergent flavivirus genomes. A previous in vitro study using truncated WNV 3′ RNA structures predicted a putative tertiary interaction between the 5′ side of the 3′-terminal SL and the loop of the SSL. Although substitution or deletion of the 3′ G (nt 87) within the SSL loop, which forms the only G-C pair in the predicted tertiary interaction, in a WNV infectious clone was lethal, a finding consistent with the involvement in a functionally relevant pseudoknot interaction, extensive mutagenesis of nucleotides in the terminal SL did not identify a cis-acting pairing partner for this SSL 3′ G. However, both the sequence and the structural context of two adjacent base pairs flanked by symmetrical internal loops in the 3′-terminal SL were shown to be required for efficient viral RNA replication. Nuclear magnetic resonance analysis confirmed the predicted SSL and SL structures but not the tertiary interaction. The SSL was previously reported to contain one of three eEF1A binding sites, and G87 in the SSL loop was shown to be involved in eEF1A binding. The nucleotides at the bottom part of the 3′-terminal SL switch between 3′ RNA-RNA and 3′-5′ RNA-RNA interactions. The data suggest that interaction of the 3′ SL RNA with eEF1A at three sites and a unique metastable structural feature may participate in regulating structural changes in the 3′-terminal SL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号