首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although mesenchymal stromal cells (MSCs) have been applied clinically to treat cardiac diseases, it is unclear how and to which extent transplanted MSCs exert their beneficial effects. To address these questions, pre-clinical MSC administrations are needed for which pigs appear to be the species of choice. This requires the use of porcine cells to prevent immune rejection. However, it is currently unknown to what extent porcine MSCs (pMSCs) resemble human MSCs (hMSCs). Aim of this study was to compare MSC from porcine bone marrow (BM) with human cells for phenotype, multi-lineage differentiation potential, immune-modulatory capacity and the effect on cardiac function after transplantation in a mouse model of myocardial infarction. Flow cytometric analysis revealed that pMSC expressed surface antigens also found on hMSC, including CD90, MSCA-1 (TNAP/W8B2 antigen), CD44, CD29 and SLA class I. Clonogenic outgrowth was significantly enriched following selection of CD271+ cells from BM of human and pig (129 ± 29 and 1961 ± 485 fold, respectively). hMSC and pMSC differentiated comparably into the adipogenic, osteogenic or chondrogenic lineages, although pMSC formed fat much faster than hMSC. Immuno-modulation, an important feature of hMSC, was clearly demonstrated for pMSC when co-cultured with porcine peripheral blood cells stimulated with PMA and pIL-2. Finally, pMSC transplantation after myocardial infarction attenuated adverse remodelling to a similar extent as hMSC when compared to control saline injection. These findings demonstrate that pMSCs have comparable characteristics and functionality with hMSCs, making reliable extrapolation of pre-clinical pMSC studies into a clinical setting very well possible.  相似文献   

2.
3.
Mesenchymal stem cell (MSC) mediated gene therapy research has been conducted predominantly on rodents. Appropriate large animal models may provide additional safety and efficacy information prior to human clinical trials. The objectives of this study were: (a) to optimize adenoviral transduction efficiency of porcine bone marrow MSCs using a commercial polyamine-based transfection reagent (GeneJammer, Stratagene, La Jolla, CA), and (b) to determine whether transduced MSCs retain the ability to differentiate into mesodermal lineages. Porcine MSCs (pMSCs) were infected under varying conditions, with replication-defective adenoviral vectors carrying the GFP gene and GFP expression analyzed. Transduced cells were induced to differentiate in vitro into adipogenic, chondrogenic, and osteogenic lineages. We observed a 5.5-fold increase in the percentage of GFP-expressing pMSCs when adenovirus type 5 carrying the adenovirus type 35 fiber (Ad5F35eGFP) was used in conjunction with GeneJammer. Transduction of pMSCs at 10.3-13.8 MOI (1,500-2,000 vp/cell) in the presence of Gene Jammer yielded the highest percentage of GFP-expressing cells ( approximately 90%) without affecting cell viability. A similar positive effect was detected when pMSCs were infected with an Ad5eGFP vector. Presence of fetal bovine serum (FBS) during adenoviral transduction enhanced vector-encoded transgene expression in both GeneJammer-treated and control groups. pMSCs transduced with adenovirus vector in the presence of GeneJammer underwent lipogenic, chondrogenic, and osteogenic differentiation. Addition of GeneJammer during adenoviral infection of pMSCs can revert the poor transduction efficiency of pMSCs while retaining their pluripotent differentiation capacity. GeneJammer-enhanced transduction will facilitate the use of adenoviral vectors in MSC-mediated gene therapy models and therapies.  相似文献   

4.
Mesenchymal stem cells (MSCs) are an important cell population in the bone marrow microenvironment. MSCs have the capacity to differentiate in vitro into several mesenchymal tissues including bone, cartilage, fat, tendon, muscle, and marrow stroma. This study was designed to isolate, expand, and characterize the differentiation ability of sheep bone marrow‐derived MSCs and to demonstrate the possibility to permanently express a reporter gene. Bone marrow was collected from the iliac crest and mononuclear cells were separated by density gradient centrifugation. Sheep MSCs cell lines were stable characterized as CD44+ and CD34? and then transfected with a green fluorescent protein (GFP) reporter gene. The GFP expression was maintained in about half (46.6%) of cloned blastocysts produced by nuclear transfer of GFP+ sheep MSCs, suggesting the possibility to establish multipotent embryonic cells' lines carrying the fluorescent tag for comparative studies on the differentiation capacity of adult stem cells (MSCs) versus embryonic stem cells. We found that sheep MSCs under appropriate culture conditions could be induced to differentiate into adipocytes, chondrocytes, and osteoblast lineages. Our results confirm the plasticity of sheep MSCs and establish the foundation for the development of a pre‐clinical sheep model to test the efficiency and safety of cell replacement therapy. J. Cell. Biochem. 114: 134–143, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Mesenchymal stem cells (MSCs) isolated from bone marrow were used to examine the hypothesis that a less differentiated cell type could increase adult somatic cell nuclear transfer (SCNT) efficiencies in the pig. SCNT embryos were produced using a fusion before activation protocol described previously and the rate at which these developed to the blastocyst stage compared with that using fibroblasts obtained from ear tissue from the same animal. The use of bone marrow MSCs did not increase cleavage rates compared with adult fibroblasts. However, the percentage of embryos that developed to the blastocyst stage was almost doubled, providing support for the hypothesis that a less differentiated cell can increase cloning efficiencies. As MSCs are relatively difficult to isolate from the bone marrow of live animals, a second experiment was undertaken to determine whether MSCs could be isolated from the peripheral circulation and used for SCNT. Blood MSCs were successfully isolated from four of the five pigs sampled. These cells had a similar differentiation capacity and marker profile to those isolated from bone marrow but did not result in increased rates of development. This is the first study to our knowledge, to report that MSCs can be derived from peripheral blood and used for SCNT for any species. These cells can be readily obtained under relatively sterile conditions compared with adult fibroblasts and as such, may provide an alternative cell type for cloning live animals.  相似文献   

6.
Recloned dogs derived from adipose stem cells of a transgenic cloned beagle   总被引:1,自引:0,他引:1  
Oh HJ  Park JE  Kim MJ  Hong SG  Ra JC  Jo JY  Kang SK  Jang G  Lee BC 《Theriogenology》2011,75(7):1221-1231
A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning.  相似文献   

7.
8.
为比较两种筛选标记基因生产转人乳铁蛋白(hLF)基因克隆山羊的效率,利用单(新霉素抗性基因,Neor)、双(新霉素抗性和绿色荧光蛋白基因,Neor/GFP)标记基因筛选转基因的供核细胞,并制作体细胞核移植转基因山羊。山羊胎儿成纤维细胞电转染单标记基因表达载体(pBLC14)或双标记基因表达载体(pAPLM),分别有58.8%(20/34)和86.7%(26/30)的抗性细胞株检测到外源基因;转染pAPLM的细胞传代培养后,仅有20%(6/30)株细胞在传代中所有细胞均能观察到荧光;分别以pBLC14和pAPLM的细胞株作为供核细胞进行体细胞核移植,共获得806枚重构胚胎,胚胎移植受体后35 d、60 d妊娠率分别为53.8%、26.9%和39.1%、21.7%,最终分别产下5只(1.9%)和7只(1.4%)克隆山羊;经PCR及Southern blotting检测,所有出生山羊均整合有外源基因。结果显示,以单、双标记基因筛选供核细胞,其重构胚融合率、怀孕率和克隆动物出生率差异不显著(P>0.05),Neor/GFP双标记基因能准确、有效地用于转基因供核细胞筛选。同时,结果也表明Neor/GFP双标记基因转染的体细胞作为供核细胞对体细胞克隆效率未出现不利影响。  相似文献   

9.
Somatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry 'foreign' DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6?. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8-16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8-16-cell stages without mosaicism. In summary, our results demonstrated that, following successful isolation of canine transgenic cells, iSCNT embryos developed to early pre-implantation stages in vitro, showing stable GFP expression. These canine-bovine iSCNT embryos can be used for further in vitro analysis of canine transgenic cells and will contribute to the production of various transgenic dogs for use as specific human disease models.  相似文献   

10.
Inefficient cloning by somatic cell nuclear transfer (SCNT) is largely attributed to defects in epigenetic reprogramming. Reprogramming factors (RFs) (Oct4, Sox2, Klf4, c-Myc, Lin28 and Nanog; OSKMLN) can achieve epigenetic reprogramming, suggesting that these might facilitate reprogramming of oocytes. Here, porcine mesenchymal stem cells (pMSCs) treated with exogenous OSKMLN or OSKM were selected as nuclei donors for SCNT. The resulting embryos displayed significantly better development than controls in terms of cleavage rates and blastomere numbers. OSKM treatment improved pluripotency status and regulation of epigenetic factors in modified pMSCs. These changed gene patterns promoted H3K9Ac both in modified pMSCs and their SCNT-derived embryos. Thus, higher histone acetylation levels in donor cells might favor subsequent clone development. Application of exogenous RFs in SCNT offers a novel way for improving cloning efficiency.  相似文献   

11.
Mesenchymal stem cells (MSCs) have received considerable attention in recent years. Particularly exciting is the prospect that MSCs could be differentiated into specialized cells of interest, which could then be used for cell therapy and tissue engineering. MSCs derived from nonhuman primates could be a powerful tool for investigating the differentiation potential in vitro and in vivo for preclinical research. The purpose of this study was to isolate cynomolgus mesenchymal stem cells (cMSCs) from adult bone marrow and characterize their growth properties and multipotency. Mononuclear cells were isolated from cynomolgus monkey bone marrow by density-gradient centrifugation, and adherent fibroblast-like cells grew well in the complete growth medium with 10 μM Tenofovir. cMSCs expressed mesenchymal markers, such as CD29, CD105, CD166 and were negative for hematopoietic markers such as CD34, CD45. Furthermore, the cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages under certain conditions, maintaining normal karyotype throughout extended culture. We also compared different methods (lipofection, nucleofection and lentivirus) for genetic modification of cMSCs and found lentivirus proved to be the most effective method with transduction efficiency of up to 44.6% and lowest level of cell death. The cells after transduction stably expressed green fluorescence protein (GFP) and maintained the abilities to differentiate down osteogenic and adipogenic lineages. In conclusion, these data showed that cMSCs isolated from cynomolgus bone marrow shared similar characteristics with human MSCs and might provide an attractive cell type for cell-based therapy in higher-order mammalian species disorder models.  相似文献   

12.
Mesenchymal stem/stromal cells isolated from human term placenta (pMSCs) have potential to treat clinically manifested inflammatory diseases. Atherosclerosis is a chronic inflammatory disease, and platelets play a contributory role towards its pathogenesis. During transplantation, MSCs interact with platelets and exert influence on their functional outcome. In this study, we investigated the consequences of interaction between pMSCs and platelets, and its impact on platelet-mediated atherosclerosis in vitro. Human platelets were treated with various types of pMSCs either directly or with their secretome, and their effect on agonist-mediated platelet activation and functional characteristics were evaluated. Human umbilical vein endothelial cells (HUVECs) were used as control. The impact of pMSCs treatment on platelets was evaluated by the expression of activation markers and by platelet functional analysis. A subset of pMSCs reduced agonist-induced activation of platelets, both via direct contact and with secretome treatments. Decrease in platelet activation translated into diminished spreading, limited adhesion and minimized aggregation. In addition, pMSCs decreased oxidized LDL (ox-LDL)-inducedCD36-mediated platelet activation, establishing their protective role in atherosclerosis. Gene expression and protein analysis show that pMSCs express pro- and anti-thrombotic proteins, which might be responsible for the modulation of agonist-induced platelet functions. These data suggest the therapeutic benefits of pMSCs in atherosclerosis.  相似文献   

13.
Mesenchymal stem cells (MSCs) can differentiate into a variety of cell types. MSCs exist in several tissues such as the bone marrow, adipose, muscle, cartilage, and tendon. This differentiation potential makes MSCs candidates for cell-based therapeutic strategies for mesenchymal tissue injuries. MSCs can be prepared from bone marrow (BM-MSCs) and adipose (AD-MSCs); however, these MSCs exhibit senescence-associated growth arrest and display inevitable heterogeneity. We established several AD-MSC cell lines from a p53-knockout (KO) mouse. These cell lines were immortalized, but no cell lines grew anchorage-independently, suggesting that they are not cancerous. They differentiated into adipocytes, osteoblasts, and chondrocytes by treatment with certain stimuli. Moreover, following injection into the tail vein, the cells migrated into the wounded region of the liver and differentiated into hepatocytes. We succeeded in establishing several AD-MSC clonal cell lines that maintain the tissue-specific markers and characteristics of the developmental phase. These clonal cell lines will serve as important tools to study the mechanism of differentiation of MSCs.  相似文献   

14.
We established and characterized a murine mesenchymal stem cell line from the bone marrow of a transgenic C57BL mouse that ubiquitously expressed green fluorescent protein (GFP). Immunostaining revealed the presence of several markers common for mesenchymal stem cells (MSCs). The cells expressed specific fibroblast proteins, such as smooth muscle actin, which is localized in stress fibrils, and vimentin, a major protein of intermediate filaments in connective tissue cells. These proteins are responsible for the ability to differentiate into adipocytes or osteoblasts under appropriate conditions. The MSC karyotype was unstable. At the 6th passage cells, were aneuploid and genetically heterogeneous. The number of chromosomes ranged from near 2n to 8n. 80% of cells had chromosome numbers between 50 and 85 without a well-defined modal class. Differential G-staining of metaphase spreads showed variability in the copy numbers of individual chromosomes and presence of random chromosome rearrangements, such as ectopic associations of nonhomologous chromosomes. All cells analyzed contained a single dicentric marker chromosome. Some cells also had mini-chromosomes regarded as indicators of gene amplification. We suppose that the karyotypic instability of MSCs that express GFP is provoked by the insertion of foreign GFP transgenes into the murine genome. These cells could be useful for the study of genomic alterations during the spontaneous oncogenic transformation of stem cells.  相似文献   

15.
Multiple myeloma is a hematological malignancy inwhich clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic le-sions due to increased osteoclast(OC) activity and sup-pressed osteoblast(OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells(MSCs) play a critical role in multiple myeloma patho-physiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of my-eloma bone disease(MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients(pMSCs) and their healthy counterparts(dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibi-tory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and ac-tivity at various levels(i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncou-pling ephrinB2-EphB4 signaling, and through augment-ed production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents(at preclinical or clinical stage) targeting those signaling pathways is commented.  相似文献   

16.
Bone marrow stroma contains a unique cell population, referred to as marrow stromal cells (MSCs), capable of differentiating along multiple mesenchymal cell lineages. A standard liquid culture system has been developed to isolate MSCs from whole marrow by their adherence to plastic wherein the cells grow as clonal populations derived from a single precursor termed the colony-forming-unit fibroblast (CFU-F). Using this liquid culture system, we demonstrate that the relative abundance of MSCs in the bone marrow of five commonly used inbred strains of mice varies as much as 10-fold, and that the cells also exhibit markedly disparate levels of alkaline phosphatase expression, an early marker of osteoblast differentiation. For each strain examined, the method of isolating MSCs by plastic adherence yields a heterogeneous cell population. These plastic adherent cells also exhibit widely varying growth kinetics between the different strains. Importantly, of three inbred strains commonly used to prepare transgenic mice that we examined, only cells derived from FVB/N marrow readily expand in culture. Further analysis of cultures derived from FVB/N marrow showed that most plastic adherent cells express CD11b and CD45, epitopes of lymphohematopoietic cells. The later consists of both pre-B-cell progenitors, granulocytic and monocytic precursors, and macrophages. However, a subpopulation of the MSCs appear to represent bona fide mesenchymal progenitors, as cells can be induced to differentiate into osteoblasts and adipocytes after exposure to dexamethasone and into myoblasts after exposure to amphotericin B. Our results point to significant strain differences in the properties of MSCs and indicate that standard methods cannot be applied to murine bone marrow to isolate relatively pure populations of MSCs.  相似文献   

17.
Mesenchymal stem cells (MSCs) can differentiate not only into mesenchymal lineage cells but also into various other cell lineages. As MSCs can easily be isolated from bone marrow, they can be used in various tissue engineering strategies. In this study, we assessed whether MSCs can differentiate into multiple skin cell types including keratinocytes and contribute to wound repair. First, we found keratin 14-positive cells, presumed to be keratinocytes that transdifferentiated from MSCs in vitro. Next, we assessed whether MSCs can transdifferentiate into multiple skin cell types in vivo. At sites of mouse wounds that had been i.v. injected with MSCs derived from GFP transgenic mice, we detected GFP-positive cells associated with specific markers for keratinocytes, endothelial cells, and pericytes. Because MSCs are predominantly located in bone marrow, we investigated the main MSC recruitment mechanism. MSCs expressed several chemokine receptors; especially CCR7, which is a receptor of SLC/CCL21, that enhanced MSC migration. Finally, MSC-injected mice underwent rapid wound repaired. Furthermore, intradermal injection of SLC/CCL21 increased the migration of MSCs, which resulted in an even greater acceleration of wound repair. Taken together, we have demonstrated that MSCs contribute to wound repair via processes involving MSCs differentiation various cell components of the skin.  相似文献   

18.
Cell-mediated transgenesis, based on somatic cell nuclear transfer (SCNT), provides the opportunity to shape the genetic make-up of cattle. Bovine primary fetal fibroblasts, commonly used cells for SCNT, have a limited lifespan, and complex genetic modifications that require sequential transfections can be challenging time and cost-wise. To overcome these limitations, SCNT is frequently used to rejuvenate the cell lines and restore exhausted growth potential. We have designed a construct to be used in a 2-step cassette exchange experiment. Our transgene contains a puromycin resistance marker gene and an enhanced green fluorescence protein (EGFP) expression cassette, both driven by a strong mammalian promoter, and flanked by loxP sites and sequences from the bovine β-casein locus. Several transgenic cell lines were generated by random insertion into primary bovine cell lines. Two of these original cell lines were rederived by SCNT and new primary cells, with the same genetic makeup as the original donors, were established. While the original cell lines were puromycin-resistant and had a characteristic EGFP expression profile, all rejuvenated cell lines were sensitive to puromycin, and displayed varied EGFP expression, indicative of various degrees of silencing. When the methylation states of individual CpG sites within the transgene were analyzed, a striking increase in transgene-specific methylation was observed in all rederived cell lines. The results indicate that original transgenic donor cells and their rejuvenated derivatives may not be equivalent and differ in the functionality of their transgene sequences.  相似文献   

19.
To elucidate the behavior of autologously transplanted mesenchymal cells in osteochondral defects, we followed transplanted cells using green fluorescent protein (GFP) transgenic rats, in which all cells express GFP signals in their cytoplasm and nuclei as transplantation donors. Bone marrow-derived mesenchymal cells, which contain mesenchymal stem cells (MSCs), were obtained from transgenic rats. Then, dense mesenchymal cell masses created by hanging-drop culture were transplanted and fixed with fibrin glue into osteochondral defects of wild-type rats. At 24 weeks after surgery, the defects were repaired with hyaline-like cartilage and subchondral bone. GFP positive cells, indicating transplanted mesenchymal-derived cells, were observed in the regenerated tissues for 24 weeks although GFP positive cells decreased in number with time. Because GFP causes no immunological rejection and requires no chemicals for visualization, transplantation between transgenic and wild-type rats can be regarded as a simulation of autologous transplantation, and the survivability of transplanted cells are able to be followed easily and reliably. Thus, the behavior of transplanted mesenchymal cells was able to be elucidated in vivo by this strategy, and the results could be essential in future tissue engineering for the regeneration of osteochondral defects with original hyaline cartilage and subchondral bone.  相似文献   

20.
Abstract.   Objective : Our previous studies have demonstrated that endogenous bone marrow cells (BMCs) contribute to renal tubular regeneration after acute tubular injury. The aim of this study was to examine which fraction of BMCs, haematopoietic lineage marrow cells (HLMCs) or mesenchymal stem cells (MSCs), are effective. Materials and methods : Six-week-old female mice were lethally irradiated and were transplanted with female enhanced green fluorescent protein-positive (GFP+), plastic non-adherent marrow cells (as a source of HLMCs) plus cloned cultured male GFP MSCs. Four weeks later, they were assigned into two groups: control mice with vehicle treatment and mice treated with HgCl2. Tritiated thymidine was given 1 h before animal killing which occurred at intervals over 2 weeks. Kidney sections were stained for a tubular epithelial marker, cell origin indicated by GFP immunohistochemistry or Y chromosome in situ hybridization; periodic acid-Schiff staining was performed, and samples were subjected to autoradiography. One thousand consecutive renal tubular epithelial cells per mouse, in S phase, were scored as either female (indigenous) GFP+ (HLMC-derived) or male (MSC-derived). Results : Haematopoietic lineage marrow cells and MSCs stably engrafted into bone marrow and spleen, but only HLMC-derived cells, not MSCs, were found in the renal tubules and were able to undergo DNA synthesis after acute renal injury. A few MSCs were detected in the renal interstitium, but their importance needs to be further explored. Conclusion : Haematopoietic lineage marrow cells, but not cloned cultured MSCs, can play a role not only in normal wear-and-tear turnover of renal tubular cells, but also in repair after tubular injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号