首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
What appear to be true septate junctions by all techniques currently available for the cytological identification of intercellular junctions are part of a complex junction that interconnects the Sertoli cells of the canine testis. In the seminiferous epithelium, septate junctions are located basal to belts of tight junctions. In thin sections, septate junctions appear as double, parallel, transverse connections or septa spanning an approximately 90-A intercellular space between adjacent Sertoli cells. In en face sections of lanthanum-aldehyde-perfused specimens, the septa themselves exclude lanthanum and appear as electron-lucent lines arranged in a series of double, parallel rows on a background of electron-dense lanthanum. In freeze-fracture replicas this vertebrate septate junction appears as double, parallel rows of individual or fused particles which conform to the distribution of the intercellular septa. Septate junctions can be clearly distinguished from tight junctions as tight junctions prevent the movement of lanthanum tracer toward the lumen, appear as single rows of individual or fused particles in interlacing patterns within freeze-fracture replicas, and are seen as areas of close membrane apposition in thin sections. Both the septate junction and the tight junction are associated with specializations of the Sertoli cell cytoplasm. This is the first demonstration in a vertebrate tissue of a true septate junction.  相似文献   

2.
The junctional membrane in the epidermal cells of the larval beetle (Tenebrio molitor L.) is comprised of macular gap junctions embedded in septate junctions. Ultrastructural and morphometric analysis of the distribution of gap junctions within the segmental epidermis suggests that this junction alone could account for the high electrotonic coupling recorded for the epidermal sheet. Analysis of the lanthanum-impregnated septate junction makes it doubtful that this junction serves as a communicating channel between beetle cells. A new model for the septate junction is presented in which pleated septa, less than 30 A thick, connect adjacent plasma membranes; the septa themselves are interconnected by two interseptal platforms that are coplanar with the plasma membranes. Iontophoretic injection of organic tracers into single epidermal cells suggests that only molecules of less than MW 1000 can transfer between cells through low-resistance junctions.  相似文献   

3.
Baldwin KM  Hakim RS 《Tissue & cell》1987,19(4):549-558
In insects, smooth septate junctions join cells derived from the embryonic midgut, and pleated septate junctions are found in all other tissues. Relatively little is known about either type of septate junction or the relationship between them, but they have been treated as two different junctions in the literature. The gap junctions which are associated with these septate junctions also differ. Crystalline gap junctions are found in the midgut, associated with smooth septate junctions, and irregular gap junctions are found in tissues where pleated septate junctions are located. We have examined the development of smooth septate junctions and crystalline gap junctions and the relationship between them, by studying the embryogenesis of the midgut in Manduca sexta (tobacco hornworm). At 56 hr of development (hatching is at 104 hr) pleated septate junctions and irregular gap junctions joined the midgut epithelial cells. At 65 hr, the septate junctions had disappeared, but gap junctions persisted. At 70 hr, smooth septate junctions had replaced the earlier pleated septate junctions and gap junctions associated with these smooth septate junctions were often of the crystalline form. In later embryos, the smooth septate junctions matured and enlarged, while all gap junctions became crystalline in form.  相似文献   

4.
Gap and septate junctions were examined in embryos of Manduca sexta (tobacco hornworm). The junctions observed were similar in structure to those reported for adult insect tissues. In the epidermis typical pleated septate junctions were found. Associated with the pleated septate junctions were inverted gap junctions which had irregularly arranged particles and pits. In the midgut typical smooth septate junctions were found. Associated with these septate junctions were gap junctions which had a regular hexagonal packing pattern. This codistribution of gap and septate junction types is discussed in light of current theories that the gap junction types are alternative forms of the same structure in different metabolic environments. In addition to these gap and septate junctions a new junction, perhaps a modified pleated septate junction, is described.  相似文献   

5.
The organization of septate junctions during morphogenesis of imaginal disks is described from freeze-fracture replicas and thin sections with a view to understanding junction modulation during rearrangements of cells in epithelia. The septate junctions of each epithelial cell of the disk are distributed in a number of discrete domains equal to the number of neighboring cells. Individual septa traverse domains of contact between pairs of adjacent cells, turn downwards at the lateral boundary of the domain and run parallel to the intersection with a third cell. This arrangement leaves small channels at three-cell intersections that are occupied by specialized structures termed "tricellular plugs." Cell rearrangement involves a progressive change in the width of contact domains between adjacent cells, until old contacts are broken and new ones established. It is proposed that the septate junction adjusts to the changing width of domains by the compaction or extension of existing septa. This redistribution of septa theoretically allows a transepithelial barrier to be maintained during cell rearrangements. The applicability of this model to other epithelial tissues is discussed.  相似文献   

6.
Swales LS 《Tissue & cell》1985,17(6):841-852
The intercellular junctions associated with the modified glial cells of the perineurium have been examined in the ganglia and main abdominal nerves of the blood-sucking bug Rhodnius prolixus, both before and and after feeding, by means of freeze-fracture and tracer studies. It was found that the pleated septate junctions found in the main abdominal nerve have many fewer septa than those found in the ganglion. These junctions appear to provide the flexibility needed for the movement of cells which occurs to accommodate the tremendous increase in body size that takes place after a bloodmeal. On feeding and during the subsequent period of digestion the nerves stretch to double their length, yet the blood-brain barrier is maintained throughout. In the same manner as loosely interconnected tight junctions, septate junctions with fewer septa seem to form a junction which is able to respond readily to the stress of stretching. With feeding and afterwards the septate junctions become disorganized and disassemble, while the gap junctions and tight junctions remain intact. It is envisaged, therefore, that the primary function of the septate junction is adhesive.  相似文献   

7.
It is confirmed that there are two distinct variations of invertebrate septate junction. The first of these, the ‘lower invertebrate pleated septate junction’, is described fully using conventional thin section, lanthanum tracer and freeze-fracture techniques. The second type, the well-known pleated septate junction characteristic of the molluscs and athropods, is renamed the ‘mollusc-arthropod pleated septate junction’, and is described briefly to allow easier comparison between the two variations. As both types have now been studied in a range of invertebrate phyla the results can be used as a basis for discussing their respective phylogenetic positions. The lower invertebrate pleated septate junction occurs in several groups in the minor phyla immediately above the Coelenterata and in the lower phyla of both the deuterostome and proterostome lineages. The mollusc-arthropod pleated septate junction is restricted to the Mollusca and Arthropoda as its name implies.  相似文献   

8.
Summary The intramembrane structures of the pleated septate junction which occur in the junctional complex of the intestine of the chaetognath Sagitta setosa have been investigated.The pleated septate junction is made up of linear rows of irregularly shaped and sized particles, often fused into short rods, and pits which can be fused into furrows. The distribution of these structures on E and P faces depends upon the preparative methods used. Many of the morphological characteristics are the same as those of the lower invertebrate pleated septate junction type defined by Green (1981a). The physiological significance of this junction is obscure.On the basis of the presence of septate junctions (both of the paired septate junction and pleated septate junction types) which have mainly morphological characteristics of the lower invertebrate pleated septate junction we can add to the hypothesis that chaetognaths are not related to the molluscs and arthropods.  相似文献   

9.
日本沼虾生精细胞与支持细胞之间的连接关系   总被引:3,自引:0,他引:3  
杨万喜  堵南山  赖伟 《动物学报》1999,45(2):178-186
用透射电镜技术研究了日本沼虾精子发生过程中不同细胞之间的连接关系。结果表明,从精原细胞期到次级精母细胞期,在生精细胞之间存在间隙连接与分隔连接与分隔连接,并且两种连接相互邻接,桥粒仅在精原细胞之间发现;从精原细胞期到精细胞期,在生精细胞与支持细胞之间也存在相互邻接的间隙连接与分隔连接,两类细胞之间有大量桥粒,形成血淋巴-精巢屏障,这种屏障可保持生精细管内环境的稳定性;精子发生的不同时期,支持细胞之  相似文献   

10.
In studying the larval Drosophila (Diptera : Drosophilidae) blood-brain barrier, it was important to determine if even minute amounts of tracer ultimately seeped through the septate junctions between perineurial cells to reach the neuronal region. Concurrent TEM with X-ray microanalysis was undertaken to resolve that issue. Ultrathin sections of Drosophila nervous tissue in LR White embedment were exposed to ionic tracer (lanthanum chloride) and assayed for presence or absence of lanthanum extracellular to the perineurium and glia making up the nerve sheath. Tracer filled the distal interseptal lattice of pleated sheet-septate junctions, but was contained prior to reaching the proximal paracellular space. No detectable tracer passed through septate junctions to enter the glial-neuronal domain. Based on our present data and the research of others, septate junctions in immature Drosophila are multifunctional structures that enforce spatial relationships between cells, seal intercellular spaces, and control cell proliferation in the epithelia. Septate junctions in Drosophila with the (dlg) gene also exhibit protein homologies to the Z0–1 human tight junction component.  相似文献   

11.
Membrane specializations of the peripheral retina of the housefly (Musca domestica) are revealed in thin sections and freeze fracture/etch replicas. Septate junctions are abundant in corner areas of the pseudocone enclosure bonding: between homologous corneal pigment cells (CPC); between homologous large pigment cells (LPC); between CPC-LPC; between Semper cells (SC); between SC-CPC. Spot desmosomes are present between Semper cells. It is likely that septate junctions function as strengthening adhesions in this area. A new membrane specialization similar to a continuous junction was observed between retinular cells of the same or adjacent ommatidium. This junction has indistinct septa in the 115 A intermembrane cleft and is intermittent in character. When this junction is absent, the apposed cells gape apart. In freeze fracture studies, this junction is characterized by bridges composed of fused membrane particles and randomly arranged particles on the P face, and noncorresponding grooves on the E face. The ridges are elongate and roughly parallel and sometimes they form enclosures. Mitochondria line up along these junctions, often within 90 A of the unit membrane. This membrane specialization has characteristics of tight and continuous junctions. In line with previous findings, we suggest that this junction assists in retinular cell orientation, possibly in enforcing the ommatidial twist and in maintaining localized ionic concentration gradients between retinular cells.  相似文献   

12.
The blood-brain barrier ensures brain function in vertebrates and in some invertebrates by maintaining ionic integrity of the extraneuronal bathing fluid. Recent studies have demonstrated that anionic sites on the luminal surface of vascular endothelial cells collaborate with tight junctions to effect this barrier in vertebrates. We characterize these two analogous barrier factors for the first time on Drosophila larva by an electron-dense tracer and cationic gold labeling. Ionic lanthanum entered into but not through the extracellular channels between perineurial cells. Tracer is ultimately excluded from neurons in the ventral ganglion mainly by an extensive series of (pleated sheet) septate junctions between perineurial cells. Continuous junctions, a variant of the septate junction, were not as efficient as the pleated sheet variety in blocking tracer. An anionic domain now is demonstrated in Drosophila central nervous system through the use of cationic colloidal gold in LR White embedment. Anionic domains are specifically stationed in the neural lamella and not noted in the other cell levels of the blood-brain interface. It is proposed that in the central nervous system of the Drosophila larva the array of septate junctions between perineurial cells is the physical barrier, while the anionic domains in neural lamella are a charge-selective barrier for cations. All of these results are discussed relative to analogous characteristics of the vertebrate blood-brain barrier.  相似文献   

13.
The Onychophora are a rare group of primitive invertebrates, relatively little investigated. Tissues from a range of their digestive, secretory and excretory organs have been examined to establish the features of their intercellular junctions. Glutaraldehyde-fixed cells from the midgut and rectum, as well as the renal organ, mucous gland, salivary gland, epidermis, CNS and testis from specimens of Peripatus acacioi, have been studied by thin section and freeze-fracture electron microscopy. Adjacent cells in the epithelia of all these tissues are joined by apical zonulae adhaerentes, associated with a thick band of cytoskeletal fibrils. These are followed by regular intercellular junctional clefts, which, in thin sections, have the dense, relatively unstriated, appearance of smooth septate junctions (SSJ). However, freeze-fracture reveals that only the midgut has what appear to be characteristic SSJs with parallel alignments of closely-packed rows of intramembranous particles (IMPs); these IMPs are much lower in profile than is common in such junctions elsewhere. The mucous gland, testis, rectal and renal tissues exhibit, after freeze-fracture, the characteristic features of pleated septate junctions (PSJ) with undulating rows of aligned but separated junctional particles. Suggestions of tricellular septate junctions are found in replicas at the interfaces between 3 cells. In addition, renal tissues exhibit scalariform junctions in the basal regions of their cells. Between these basal scalariform and apical septate junctions, other junctions with reduced intercellular clefts are observed in these renal tissues as well as the rectum, but these appear not to be gap junctions. Such have not been unequivocally observed in any of the tissues studied from this primitive organism; the same is true of tight junctions.  相似文献   

14.
Dye coupling experiments were performed to determine whether the gap junctions connecting Sertoli cells with other Sertoli cells and different germ cell stages in rats showed functional variations. Chop loading of adult rat seminiferous tubules was conducted using fluorescent dextran controls and a variety of low-molecular-weight tracers (lucifer yellow, biotin-X-cadaverine, biotin cadaverine, and neurobiotin) to evaluate dye coupling in situ, and scrape loading was used to study dye coupling in Sertoli-germ cell cocultures established using prepuberal rats. Sertoli-Sertoli coupling is relatively short range and nonselective in situ, whereas coupling between Sertoli cells and chains of spermatogonia is strongly selective for the positively charged biotin tracers relative to negatively charged lucifer yellow. Coupling between Sertoli cells and spermatogonia was also asymmetric; lucifer yellow in germ cells never diffused into Sertoli cells, and biotinylated tracers only weakly diffused from spermatogonia to Sertoli cells. Asymmetric coupling would facilitate the concentration in germ cells of molecules diffusing through junctions from Sertoli cells. Dye coupling between Sertoli cells and adluminal germ cells was too weak to detect by fluorescence microscopy, suggesting that the junctional communication between these cells may be functionally different from that between Sertoli and basal germ cells. The results show that there are multiple routes of gap junction communication in rat seminiferous tubules that differ in permeability properties and show alternative gating states. Functional diversity of gap junctions may permit regulated communication among the many interacting Sertoli cells and germ cell stages in the seminiferous epithelium.  相似文献   

15.
Junctional complexes between the epithelial cells in the four distinct regions of the glow-worm Malpighian tubule were investigated by electron microscopy using thin sectioning, freeze-fracturing, osmotic disruption and tracer techniques. The lateral plasma membranes of all four cell types are joined by smooth septate junctions but the extent of the complex across the cell depth varies in the four different regions. The width of the septa, the interseptal spacing and the separation between the outer leaflets of the adjacent plasma membranes are different for each cell type. Gap junctions were identified only in the junctional complex between Type IV cells and were intercalated amongst large lateral sinuses. In oblique sections of lanthanum infiltrated tissue, the electron-lucent septa at the basal side of the junction are outlined by the tracer as it penetrates. In the Junctional complexes of all four regions the septa appear as short, distinct, linear bars. In tangential sections of gap junctions between Type IV cells, the junctions appear as a hexagonal array of intermembrane particles with a centre to centre spacing of 18 nm. Horseradish peroxidase did not penetrate the junctional complexes very far but readily passed through the basal lamina into the spaces between extracellular invaginations of the basement membrane of the cells. Junctional complexes in all four areas of the tubule have similar freeze-fracture faces. In freeze-fracture replicas of fixed tissue continuous ridges of fused particles are seen on the P face and complementary furrows are found on the E face. Junctional response to osmotically adjusted Ringer solutions was similar in all four cell types. Distortion or ‘blistering’ of the intercellular space between the septa of the junction occurred when the tissue was bathed in or injected with a hypertonic Ringer solution. The structure of these junctions, visualized by the different techniques, and the role of the septate junction in a transporting epithelium, are discussed.  相似文献   

16.
Summary In the epidermis of turbellarians septate junctions of the pleated sheet type have been demonstrated in conventional thin sections and freeze fractured preparations. The structure of these junctions entirely agrees with that found in molluscs and arthropods.Financially supported by DFG (Sto 75/3,4; We 380/5)  相似文献   

17.
The leech photoreceptor forms a unicellular epithelium: every cell surrounds an extracellular “vacuole” that is connected to the remaining extracellular space via narrow clefts containing pleated septate junctions. We analyzed the complete structural layout of all septa within the junctional complex in elastic brightfield stereo electron micrographs of semithin serial sections from photoreceptors infiltrated with colloidal lanthanum. The septa form tortuous interseptal corridors that are spatially continuous, and open ended basally and apically. Individual septa seem to be impermeable to lanthanum; interseptal corridors form the only diffusional pathway for this ion. The junctions form no diffusion barrier for the electron-dense tracer Ba2+, but they hinder the diffusion of various hydrophilic fluorescent dyes as demonstrated by confocal laser scanning microscopy (CLSM) of live cells. Even those dyes that penetrate gap junctions do not diffuse beyond the septate junctions. The aqueous diffusion pathway within the septal corridors is, therefore, less permeable than the gap-junctional pore. Our morphological results combined with published electrophysiological data suggest that the septa themselves are not completely tight for small physiologically relevant ions. We also examined, by CLSM, whether the septate junctions create a permeability barrier for the lateral diffusion of fluorescent lipophilic dyes incorporated into the peripheral membrane domain. AFC16, claimed to remain in the outer membrane leaflet, does not diffuse beyond the junctional region, whereas DiIC16, claimed to flip-flop, does. Thus, pleated septate junctions, like vertebrate tight junctions, contribute to the maintenance of cell polarity.  相似文献   

18.
The tight junctions between Sertoli cells were examined by freeze-fracture in 3-month-old prenatally irradiated rats, whose seminiferous tubules are devoid of germ cells. The replicas from irradiated tubules show elaborate interdigitations of the lateral membranes of Sertoli cells and very extensive tight junctions. These junctions are characterized by a great number of continuous parallel or complex interweaving strands of intramembranous particles, preferentially associated with E fracture faces. The presence of highly cross-linked tight junctional strands is compatible with an epithelium deprived of germ cells, with a reduced need for flexibility. Anomalous ectoplasmic specializations, consisting of groups of cisternae arranged perpendicularly to the lateral surface, are found in the irradiated tubules. These structures may be involved in a storage mechanism of redundant lateral membrane resulting from the elimination of germ cells. Typical gap junctions, intercalated between the tight junctional strands, are larger and more frequently found in treated animals than in controls. These findings indicate that a very tight permeability barrier seems to be established in the irradiated testis even in the absence of germ cells. Thus, the formation and maintenance of Sertoli tight junctions do not appear to be directly dependent on the presence of germ cells. Nevertheless, the alterations detected in the tight junction architecture and in the ectoplasmic specializations indicate that maturing germ cells probably contribute to the functional organization of the blood—testis barrier in the normal testis.  相似文献   

19.
In most cell types, distinct forms of intercellular junctions have been visualized at the ultrastructural level. Among these, the septate junctions are thought to seal the neighboring cells and thus to function as the paracellular barriers. The most extensively studied form of septate junctions, referred to as the pleated septate junctions, is ultrastructurally distinct with an electron-dense ladder-like arrangement of transverse septa present in invertebrates as well as vertebrates. In invertebrates, such as the fruit fly Drosophila melanogaster, septate junctions are present in all ectodermally derived epithelia, imaginal discs, and the nervous system. In vertebrates, septate junctions are present in the myelinated nerves at the paranodal interface between the myelin loops and the axonal membrane. In this review, we present an evolutionary perspective of septate junctions, especially their initial identification across phyla, and discuss many common features of their morphology, molecular organization, and functional similarities in invertebrates and vertebrates.  相似文献   

20.
Pfeiffer DC  Vogl AW 《Tissue & cell》2002,34(6):450-459
The germinal epithelium of male vertebrates consists of Sertoli cells and spermatogenic cells. Intercellular junctions formed by Sertoli cells assume critical roles in the normal functions of this epithelium. While Sertoli cell junctions have been well characterized in mammals, similar junctions in nonmammalian vertebrates have received little attention. We examined the intercellular junctions found within the germinal epithelium of the hagfish (Eptatretus stouti) and lamprey (Lampetra tridentatus). Ultrastructurally, Sertoli cells were seen to form filament-associated junctions in both species. Adjacent Sertoli cells formed microfilament-related junctions near their apices. Filaments of these junctions were arranged in loose networks and were not associated with cisterns of endoplasmic reticulum. In fixed, frozen sections of hagfish testis, similar areas labeled with rhodamine phalloidin, indicating the filament type is actin. In the lamprey, desmosomes were observed immediately below the microfilament-related junctions. In appearance and location, the Sertoli cell junctions observed in these species resembled those of the typical junctional complex of other epithelial cell types. No junctions were observed between Sertoli cells and elongating spermatids. In the hagfish, but not the lamprey, an additional zone of microfilaments occurred near the base of Sertoli cells in areas of association with the basal lamina. Our observations are consistent with the proposal that the unique forms of intercellular attachment found in the testes of higher vertebrates evolved from a typical epithelial form of intercellular junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号