首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
肠道微生物通过其代谢产物参与一些生理及病理过程。主要介绍了几类与动脉粥样硬化相关的代谢产物,包括胆汁盐、短链脂肪酸、原儿茶酸、氧化三甲胺、脂多糖,阐述其如何影响动脉粥样硬化的进程,并讨论了通过降低一些有害代谢产物来预防与治疗动脉粥样硬化性心血管疾病的可行性。  相似文献   

2.
微生物代谢产物在溶栓药物制备中的应用研究进展   总被引:2,自引:0,他引:2  
目的 :探讨从微生物代谢产物中寻找溶栓药物制备的研究方法和动态。方法 :从大量的近期文献中阐述了来源于微生物代谢产物溶栓药物的性质和优缺点。结果 :从微生物代谢产物中寻找溶栓药物是传统而又简单的方法 ,比较经济实惠。结论 :微生物代谢产物是溶栓药物或其他药物的重要来源。  相似文献   

3.
涠洲岛火山口生态环境特殊,蕴藏着丰富且独具特色的微生物资源。关于涠洲岛火山口海洋真菌来源的次级代谢产物鲜有报道。本研究采用两种培养基从涠洲岛火山口海洋植物中分离真菌,对菌株的代谢产物进行分离纯化,并通过波谱等方法鉴定化合物结构。从4种涠洲岛火山口附近的海洋植物样本中分离真菌共31株,从菌株青霉菌Penicillium sp. TX-M1-3和Penicillium sp. LW-2-1的发酵物中纯化获得2个主要次级代谢产物,并鉴定为核丛青霉素和弯孢霉菌素。活性评价表明核丛青霉素对NPC1L1蛋白具有一定的抑制作用,暗示其在治疗心血管疾病方面的潜力。本结果拓展了涠洲岛火山口微生物资源及其次生代谢产物方面的研究,为该地区微生物与其次生代谢产物的研究提供了相关基础。  相似文献   

4.
近年来抗生素耐药性问题日趋严重,患癌人数也在逐年增加,亟需开发新型药物。嗜盐微生物作为一类特殊的极端环境微生物,具有代谢多样性丰富、营养需求较低和能适应恶劣条件等特点,是发现新型药物的希望。目前,国内外学者已从嗜盐微生物中分离出了多种代谢产物和酶,具有明显的抗菌和/或抗肿瘤等活性。文中综述了嗜盐微生物及其相关产物在抗菌、抗炎、抗肿瘤、抗氧化、生物医学材料以及药物载体等生物医学方面的作用,尤其对近年来在嗜盐微生物中发现的新型抗菌和抗肿瘤物质以及嗜盐微生物特有的代谢产物四氢嘧啶等进行了总结,并对其后续在生物医药领域的开发和产业化应用进行了展望。  相似文献   

5.
肠道菌群失调与冠心病密切相关。本文就肠道菌群研究的相关技术方法、冠心病患者的肠道菌群分类和功能特征以及肠道菌群代谢产物氧化三甲胺(trimethylamine-N-oxide,TMAO)与冠心病的关系进行综述。尽管鸟枪法宏基因组学可对微生物精准鉴定到属水平,并提供更多的微生物群落信息,但是16S rRNA在心血管疾病领域的应用更为广泛。研究人员已经证实冠心病患者的肠道菌群分类和功能特征发生了改变。代谢组学技术的应用发现TMAO可能具有促动脉粥样硬化的特性,推测其可能是预测心血管不良事件发生的潜在生物标志物。肠道菌群及其代谢产物TMAO可能成为心血管疾病管理和治疗的新靶点。  相似文献   

6.
边疆  宋福行  张立新 《微生物学报》2008,48(8):1132-1137
微生物次级代谢产物历来是天然药物的重要来源,过去曾被称为"生物沙漠"的海洋,由于从中分离到大量新的微生物、基因及生物活性化合物,被重新认识逆转而成为一种"生物多样化的热带雨林".构建一个高质量微生物库及其天然产物库是保证药物和其他筛选成功的前提和关键.但如何高效建立高质量微生物天然产物库仍面临很多瓶颈问题.我们拟从:(1)扩大可培养微生物的多样性及去重复化;(2)扩大基因资源多样性及去重复化;(3)扩大微生物次级代谢产物多样性及去重复化;(4)寻找崭新次级代谢产物的新技术新方法,特别是针对多靶位药物的高通量互动筛选方面提出应对的研究策略.利用上述化学微生物学策略分离生物活性化合物不仅在生物技术和制药学应用中显现重要性,也增加了我们对微生物的多样性、生态系统功能和应用生物学的理解.  相似文献   

7.
尿酸是体内嘌呤代谢的终末产物,与各类心血管疾病的发生发展密切相关,是心血管疾病的重要危险因子之一。综述尿酸的代谢及生理病理意义,尿酸代谢失衡与急性心肌梗死、高血压、胰岛素抵抗、肥胖症等心血管疾病的关联以及尿酸代谢失衡的药物干预与心血管保护作用。  相似文献   

8.
肺部微生物组存在于呼吸道和实质组织中,通过菌群紊乱、代谢产物、炎症反应、免疫反应、基因毒性等方面介导肺部损伤。随着肺部微生物组的深入研究,发现肺部微生物组的相关活动与慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)和肺癌息息相关,能够促使COPD向肺癌的转变。本文主要介绍了肺部微生物组稳态及其通过炎症反应导致COPD和肺癌,重点探讨了肺部微生物组如何通过炎症反应介导COPD转化为肺癌,以期为COPD和肺癌的临床预防、优化治疗以及新型药物设计提供新的理论依据。  相似文献   

9.
冠心病 (Coronary artery disease,CAD) 是全球发病率和死亡率最高的一种心血管疾病,冠心病和肠道菌群失调密切相关,肠道菌群可能是未来冠心病的重要诊断标志物,改善肠道菌群微环境有望成为治疗冠心病的新途径。作为肠道菌群参与合成的活性代谢产物,氧化三甲胺 (Trimethylamine-N-oxide,TMAO) 水平的升高与心血管疾病患病风险、全因死亡率的增加有关;基础研究表明TMAO可能具有促动脉粥样硬化特性;这些研究提示TMAO可作为预防和治疗冠心病的潜在靶点。文中分析了当前调控肠道菌群及其代谢产物TMAO治疗冠心病的临床及基础性研究,以期为冠心病的治疗提供帮助。  相似文献   

10.
微生物是一种重要的生物资源,特别是近来年,从特殊生境微生物中寻找具有重要生物活性代谢产物成为一个热点研究领域。主要就特殊生境微生物代谢产物的特殊性、特殊生境适应机制及其活性代谢产物等方面的研究进展和前景进行了简要的阐述,为特殊生境微生物的研究与开发提供参考。  相似文献   

11.
Accumulation of fibrin in the blood vessels usually results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. For thrombolytic therapy, microbial fibrinolytic enzymes have now attracted much more attention than typical thrombolytic agents because of the expensive prices and the undesirable side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus from traditional fermented foods. The physiochemical properties of these enzymes have been characterized, and their effectiveness in thrombolysis in vivo has been further identified. Therefore, microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases.Dr. Yong Peng was invited by the editor-in-chief, Professor Dr. A. Steinbüchel, to write this review  相似文献   

12.
Microbial ecosystem comprises a complex community in which bacteria interact with each other.The potential roles of the intestinal microbiome play in human health have gained considerable attention.The imbalance of gut microbial community has been looked to multiple chronic diseases.Cardiovascular diseases(CVDs)are leading causes of morbidity worldwide and are influ-enced by genetic and environmental factors.Recent advances have provided scientific evidence that CVD may also be attributed to gut microbiome.in this review,we highlight the complex interplay between microbes,their metabolites,and the potential influence on the generation and development of CVDs.The therapeutic potentiai of using intestinal microbiomes to treat CVD is also discussed.it is quite possible that gut microbes may be used for clinical treatments of CVD in the near future.  相似文献   

13.
14.
Anticoagulants and inhibitors of platelet aggregation derived from leeches   总被引:6,自引:0,他引:6  
Salzet M 《FEBS letters》2001,492(3):187-192
Increased life expectancy is associated with aging populations in the developed countries, and we can expect an increased incidence of cardiovascular and inflammatory diseases and cancers. A priority for medical research is to reduce such morbidity. Leeches have been demonstrated to be a useful source of drugs to treat cardiovascular diseases, as they have evolved highly specific mechanisms to feed on their hosts by blocking blood coagulation. Powerful molecules acting at different points in the coagulation cascade or in the inhibition of platelet aggregation have been purified from these animals. Moreover, clinical trials confirm their potential to treat cardiovascular diseases.  相似文献   

15.
Bacteria and fungi produce a remarkable array of bioactive small molecules. Many of these have found use in medicine as chemotherapies to treat diseases ranging from infection and cancer to hyperlipidemia and autoimmune disorders. The applications may or may not reflect the actual targets for these compounds. Through careful studies of microbes, their associated molecules and their targets, a growing understanding of the ecology of microbial secondary metabolism is emerging that exposes the central role of secondary metabolites in many complex biological systems.  相似文献   

16.
The intestine is colonized by a considerable community of microorganisms that cohabits within the host and plays a critical role in maintaining host homeostasis. Recently, accumulating evidence has revealed that the gut microbial ecology plays a pivotal role in the occurrence and development of cardiovascular disease (CVD). Moreover, the effects of imbalances in microbe–host interactions on homeostasis can lead to the progression of CVD. Alterations in the composition of gut flora and disruptions in gut microbial metabolism are implicated in the pathogenesis of CVD. Furthermore, the gut microbiota functions like an endocrine organ that produces bioactive metabolites, including trimethylamine/trimethylamine N-oxide, short-chain fatty acids and bile acids, which are also involved in host health and disease via numerous pathways. Thus, the gut microbiota and its metabolic pathways have attracted growing attention as a therapeutic target for CVD treatment. The fundamental purpose of this review was to summarize recent studies that have illustrated the complex interactions between the gut microbiota, their metabolites and the development of common CVD, as well as the effects of gut dysbiosis on CVD risk factors. Moreover, we systematically discuss the normal physiology of gut microbiota and potential therapeutic strategies targeting gut microbiota to prevent and treat CVD.  相似文献   

17.
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.  相似文献   

18.
Microbial metabolism of dietary phenolic compounds in the colon   总被引:1,自引:0,他引:1  
Plant foods contain substantial amounts of phenolic compounds. Dietary interventions with phenolic supplementation show that phenolic compounds are transformed into phenolic acids or lactone structures by intestinal microbiota. The colon is the main site of microbial fermentation. The metabolites circulate in plasma and are excreted via urine. The entero-hepatic circulation ensures that their residence time in plasma is extended compared to that of their parent compounds. Thus these metabolites may exert systemic effects, which however have not been studied adequately. In particular the health implications of microbial metabolites of flavonoids, mostly phenolic acids, are unknown. This review aims to elucidate the microbial metabolism of most of the phenolic classes: flavonoids, isoflavonoids, lignans, phenolic acids and tannins. Some examples of biological activity studies of flavonoid and lignan metabolites are given. Biological significance of enterolactone, a mammalian plant lignan metabolite, has been studied quite extensively, but convincing evidence of the health benefits of the diverse pool of microbial metabolites is still scarce. Hopefully, novel tools in systems biology and the constant search for biomarkers will elucidate the role of the phenolic metabolome in health and in the prevention of chronic diseases. In conclusion, the colon is not only an excretion route, but also an active site of metabolism and deserves further attention from the scientific community.  相似文献   

19.
微生物发酵饲料,目前是饲料工业和养殖业的关注热点之一,也是绿色安全养殖的重要条件。我国早在20世纪90年代开始研究。近年来,微生物发酵饲料在畜牧业生产中得到迅速发展,其生产和应用形式更加多样化。在水产畜牧养殖时,将日基础饲粮部分替换成微生物发酵饲料或经复合微生物发酵后直接饲用,因含有活菌及相关代谢产物,能进一步改善动物对饲料的营养吸收、提高动物的生产性能、防病治病和改善养殖环境。未来将在饲料替代抗生素、饲养高品质动物、畜禽防病等方面发挥必不可少的作用。本文阐释了微生物发酵饲料概念,作用机理及其在畜牧业、水产养殖应用中的最新研究现状,为微生物发酵饲料产品及新技术的研发提供参考。  相似文献   

20.
Mitochondrial dysfunction has been associated with the aging process and a large variety of human disorders, such as cardiovascular and neurodegenerative diseases, cancer, migraine, infertility, kidney and liver diseases, toxicity of drugs and many more. It is well recognized that the physiological role of mitochondria widely exceeds that of solely being the biochemical power plant of our cells. Over the recent years, mitochondria have become an interesting target for drug therapy, and the research field aimed at “targeting mitochondria” is active and expanding as witnessed by this already third edition of the world congress on targeting mitochondria. It is becoming a necessity and an urge to know why and how to target mitochondria with bioactive molecules and drugs in order to treat and prevent mitochondria-based pathologies and chronic diseases. This special issue covers a variety of new strategies and innovations as well as clinical applications in mitochondrial medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号