首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic isolation by distance (IBD) has rarely been described in marine species with high potential for dispersal at both the larval and adult life-history stages. Here, we report significant relationships between inferred levels of gene flow and geographic distance in the Atlantic cod, Gadus morhua, at 10 nuclear restriction-fragment-length-polymorphism (RFLP) loci at small regional scales in the western north Atlantic region (< 1,600 km) that mirror those previously detected over its entire geographic range (up to 7,300 km). Highly significant allele frequency differences were observed among eight northwestern Atlantic populations, although the mean FST for all 10 loci was only 0.014. Despite this weak population structuring, the distance separating populations explained between 54% and 62% of the variation in gene flow depending on whether nine or 10 loci were used to estimate Nm. Across the species' entire geographic range, highly significant differences were observed among six regional populations at nine of the 10 loci (mean FST = 0.068) and seven loci exhibited significant negative relationships between gene flow and distance. At this large geographic scale, natural selection acting in the vicinity of one RFLP locus (GM798) had a significant effect on the correlation between gene flow and distance, and eliminating it from the analysis caused the coefficient of determination to increase from 17% to 62%. The role of vicariance was assessed by sequentially removing populations from the analysis and was found to play a minor role in contributing to the relationship between gene flow and distance at either geographic scale. The correlation between gene flow and distance detected in G. morhua at small and large spatial scales suggests that dispersal distances and effective population sizes are much smaller than predicted for the species and that the recent age of populations, rather than extensive gene flow, may be responsible for its weak population structure. Our results suggest that interpreting limited genetic differences among populations as reflecting high levels of ongoing gene flow should be made with caution.  相似文献   

2.
Six microsatellite loci were isolated from the ground beetle Carabus problematicus. The polymorphism ranged from two to 17 alleles and observed and expected heterozygosities ranged from 0.137 to 0.676 and 0.147 to 0.710, respectively.  相似文献   

3.
We isolated and characterized 10 microsatellite loci in the ground beetle Carabus nemoralis (Coleoptera, Carabidae), an ubiquist species largely distributed in Europe. Polymorphism ranged from 3 to 12 alleles on the 30 individuals from the same locality examined.  相似文献   

4.
Many models for inference of population genetic parameters are based on the assumption that the data set at hand consists of groups displaying within-group Hardy-Weinberg equilibrium at individual loci and linkage equilibrium between loci. This assumption is commonly violated by the presence of within-group spatial structure arising from nonrandom mating of individuals due to isolation by distance (IBD). This paper proposes a model and simulation method implemented in a computer program to flexibly simulate data displaying such patterns. The program permits displaying of smooth spatial variations of allele frequencies due to IBD and more abrupt variations due to presence of strong barriers to gene flow. It is useful in assessing performance of various statistical inference methods and in designing spatial sampling schemes. This is shown by a simulation study aimed at assessing the extent to which IBD patterns affect accuracy of cluster inferences performed in models assuming panmixia. The program is also used to study the effects of spatial sampling scheme (e.g. sampling individuals in clumps or uniformly across the spatial domain). The accuracy of such inferences is assessed in terms of number of inferred populations, assignment of individuals to populations and location of borders between populations. The effect of spatial sampling was weak while the effect of IBD may be substantial, leading to the inference of spurious populations, especially when IBD was strong with respect to the size of the sampling domain. The model and program are new and have been embedded in the R package Geneland, for user convenience and compliance with existing data formats.  相似文献   

5.
Population differentiation is a crucial step in the speciation process and is therefore a central subject in studies of microevolution. Assessing divergence and inferring its dynamics in space and time generally require a wide array of markers. Until now however, most studies of population structure are based on molecular markers and those concerning morphological traits are more scarce. In the present work, we studied morphological differentiation among populations of the ground beetle Carabus solieri, and tested its congruence with genetic population structure. The shape of pronotum and aedeagus was assessed using Dual Axis Fourier Shape Analysis. manova on Fourier coefficients revealed highly significant morphological variation between populations and a similar geographical pattern of differentiation for both structures. On the whole, morphological and genetic patterns were also found to be congruent. Our analysis confirms the phylogeographical scenario proposing that two entities of C. solieri differentiated during the last glaciation events before recolonizing the actual range of the species. It also indicates a large introgression between the two differentiated entities in the centre of the range.  相似文献   

6.
Aims Knowledge of genetic structure of natural populations and its determinants may provide key insights into the ability of species to adapt to novel environments. In many genetic studies, the effects of climate could not be disentangled from the effects of geographic proximity. We aimed to understand the effects of temperature and moisture on genetic diversity of populations and separate these effects from the effects of geographic distance. We also wanted to explore the patterns of distribution of genetic diversity in the system and assess the degree of clonality within the populations. We also checked for possible genome size variation in the system.  相似文献   

7.
Zooplanktonic organisms that disperse passively as diapausing eggs often exhibit surprisingly strong population subdivision given their high colonization ability. Here we attempt to disentangle the impacts of colonization history and gene flow on these organisms by studying the population genetic structure of the rotifer Brachionus plicatilis. The resting egg banks of B. plicatilis in fourteen salt lake populations in the Iberian Peninsula were examined using seven microsatellite loci. A remarkably high degree of geographical structuring was found (Fst=0.43), with a significant pattern of isolation by distance. Microsatellite loci were in genetic equilibrium, ruling out inbreeding as an important force in population structuring. Comparisons are drawn with previously published phylogeographical data. Surprisingly, introgression of nuclear genes was detected in neighbouring populations with divergent mtDNA haplotypes. These results stress the long lasting impact of colonization history and the modulating effect of gene flow at local scales in these organisms.  相似文献   

8.
There is an ongoing debate on the scale of pelagic larval dispersal in promoting connectivity among populations of shallow, benthic marine organisms. The linearly arranged Hawaiian Islands are uniquely suited to study scales of population connectivity and have been used extensively as a natural laboratory in terrestrial systems. Here, we focus on Hawaiian populations of the lobe coral Porites lobata, an ecosystem engineer of shallow reefs throughout the Pacific. Patterns of recent gene flow and population structure in P. lobata samples (n = 318) from two regions, the Hawaiian Islands (n = 10 sites) and from their nearest neighbour Johnston Atoll, were analysed with nine microsatellite loci. Despite its massive growth form, ~ 6% of the samples from both regions were the product of asexual reproduction via fragmentation. Cluster analysis and measures of genetic differentiation indicated that P. lobata from the Hawaiian Islands are strongly isolated from those on Johnston Atoll (F(ST) = 0.311; P < 0.001), with the descendants of recent migrants (n = 6) being clearly identifiable. Within the Hawaiian Islands, P. lobata conforms to a pattern of isolation by distance. Here, over 37% (P = 0.001) of the variation in genetic distance was explained by geographical distance. This pattern indicates that while the majority of ongoing gene flow in Hawaiian P. lobata occurs among geographically proximate reefs, inter-island distances are insufficient to generate strong population structure across the archipelago.  相似文献   

9.
10.
Empirical population genetic studies have been dominated by a neutralist view, according to which gene flow and drift are the main forces driving population genetic structure in nature. The neutralist view in essence describes a process of isolation by dispersal limitation (IBDL) that generally leads to a pattern of isolation by distance (IBD). Recently, however, conceptual frameworks have been put forward that view local genetic adaptation as an important driver of population genetic structure. Isolation by adaptation (IBA) and monopolization (M) posit that gene flow among natural populations is reduced as a consequence of local genetic adaptation. IBA stresses that effective gene flow is reduced among habitats that show dissimilar ecological characteristics, leading to a pattern of isolation by environment. In monopolization, local genetic adaptation of initial colonizing genotypes results in a reduction in gene flow that fosters the persistence of founder effects. Here, we relate these different processes driving landscape genetic structure to patterns of IBD and isolation by environment (IBE). We propose a method to detect whether IBDL, IBA and M shape genetic differentiation in natural landscapes by studying patterns of variation at neutral and non‐neutral markers as well as at ecologically relevant traits. Finally, we reinterpret a representative number of studies from the recent literature by associating patterns to processes and identify patterns associated with local genetic adaptation to be as common as IBDL in structuring regional genetic variation of populations in the wild. Our results point to the importance of quantifying environmental gradients and incorporating ecology in the analysis of population genetics.  相似文献   

11.
Levels of gene flow among populations vary both inter- and intraspecifically, and understanding the ecological bases of variation in levels of gene flow represents an important link between the ecological and evolutionary dynamics of populations. The effects of habitat spatial structure on gene flow have received considerable attention; however, most studies have been conducted at a single spatial scale and without background data on how individual movement is affected by landscape features. We examined the influence of habitat connectivity on inferred levels of gene flow in a high-altitude, meadow-dwelling butterfly, Parnassius smintheus. For this species, we had background data on the effects of landscape structure on both individual movement and on small-scale population genetic differentiation. We compared genetic differentiation and patterns of isolation by distance, based on variation at seven microsatellite loci, among three regions representing two levels of connectivity of high-altitude, nonforested habitats. We found that reduced connectivity of habitats, resulting from more forest cover at high altitudes, was associated with greater genetic differentiation among populations (higher estimated FST), a breakdown of isolation by distance, and overall lower levels of inferred gene flow. These observed differences were consistent with expectations based on our knowledge of the movement behaviour of this species and on previous population genetic analyses conducted at the smaller spatial scale. Our results indicate that the role of gene flow may vary among groups of populations depending on the interplay between individual movement and the structure of the surrounding landscape.  相似文献   

12.
Combined action from over‐harvesting and recent mass mortality events potentially linked to ongoing climate changes has led to new concerns for the conservation of shallow populations (5–60 m) of Corallium rubrum, an octocorallian that is mainly found in the Mediterranean Sea. The present study was designed to analyse population structure and relationships at different spatial scales (from 10s of meters to 100s of kilometres) with a focus on dispersal pattern. We also performed the first analysis of the distribution of genetic diversity using a comparative approach between regional‐clusters and samples. Forty populations dwelling in four distinct regions between 14 and 60 m in depth were genotyped using 10 microsatellites. Our main results indicate (i) a generalized pair‐sample differentiation combined with a weak structure between regional‐clusters; (ii) the occurrence of isolation by distance at the global scale, but also within two of the three analysed regional‐clusters; (iii) a high level of genetic diversity over the surveyed area with a heterogeneous distribution from regional‐cluster to sample levels. The evolutionary consequences of these results are discussed and their management implications are provided.  相似文献   

13.
14.
Single nucleotide polymorphisms (SNPs) are predicted to supersede microsatellites as the marker of choice for population genetic studies in the near future. To date, however, very few studies have directly compared both marker systems in natural populations, particularly in non‐model organisms. In the present study, we compared the utility of SNPs and microsatellites for population genetic analysis of the red seaweed Chondrus crispus (Florideophyceae). Six SNP loci yielded very different patterns of intrapopulation genetic diversity compared to those obtained using seven moderately (mean 5.2 alleles) polymorphic microsatellite loci, although Bayesian clustering analysis gave largely congruent results between the two marker classes. A weak but significant pattern of isolation‐by‐distance was observed across scales from a few hundred metres to approximately 200 km using the combined SNP and microsatellite data set of 13 loci. Over larger scales, however, there was little correlation between genetic divergence and geographical distance. Our findings suggest that even a moderate number of SNPs is sufficient to determine patterns of genetic diversity across natural populations, and also highlight the fact that patterns of genetic variation in seaweeds arise through a complex interplay of short‐ and long‐term natural processes, as well as anthropogenic influence. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 108 , 251–262.  相似文献   

15.
The mummichog, Fundulus heteroclitus, exhibits extensive latitudinal clinal variation in a number of physiological and biochemical traits, coupled with phylogeographical patterns at mitochondrial and nuclear DNA loci that suggest a complicated history of spatially variable selection and secondary intergradation. This species continues to serve as a model for understanding local and regional adaptation to variable environments. Resolving the influences of historical processes on the distribution of genetic variation within and among extant populations of F. heteroclitus is crucial to a better understanding of how populations evolve in the context of contemporary environments. In this study, we analysed geographical patterns of genetic variation at eight microsatellite loci among 15 populations of F. heteroclitus distributed throughout the North American range of the species from Nova Scotia to Georgia. Genetic variation in Northern populations was lower than in Southern populations and was strongly correlated with latitude throughout the species range. The most common Northern alleles at all eight loci exhibited concordant latitudinal clinal patterns, and the existence of an abrupt transition zone in allele frequencies between Northern and Southern populations was similar to that observed for mitochondrial DNA and allozyme loci. A significant pattern of isolation by distance was observed both within and between northern and southern regions. This pattern was unexpected, particularly for northern populations, given the recent colonization history of post-Pleistocene habitats, and was inconsistent with either a recent northward population expansion or a geographically restricted northern Pleistocene refugium. The data provided no evidence for recent population bottlenecks, and estimates of historical effective population sizes suggest that post-Pleistocene populations have been large throughout the species distribution. These results suggest that F. heteroclitus was broadly distributed throughout most of its current range during the last glacial event and that the abrupt transition in allele frequencies that separate Northern and Southern populations may reflect regional disequilibrium conditions associated with the post-Pleistocene colonization history of habitats in that region.  相似文献   

16.
Genetic divergence between populations is shaped by a combination of drift, migration, and selection, yielding patterns of isolation‐by‐distance (IBD) and isolation‐by‐environment (IBE). Unfortunately, IBD and IBE may be confounded when comparing divergence across habitat boundaries. For instance, parapatric lake and stream threespine stickleback (Gasterosteus aculeatus) may have diverged due to selection against migrants (IBE), or mere spatial separation (IBD). To quantitatively partition the strength of IBE and IBD, we used recently developed population genetic software (BEDASSLE) to analyze partial genomic data from three lake‐stream clines on Vancouver Island. We find support for IBD within each of three outlet streams (unlike prior studies of lake‐stream stickleback). In addition, we find evidence for IBE (controlling for geographic distance): the genetic effect of habitat is equivalent to geographic separation of ~1.9 km of IBD. Remarkably, of our three lake‐stream pairs, IBE is strongest where migration between habitats is easiest. Such microgeographic genetic divergence would require exceptionally strong divergent selection, which multiple experiments have failed to detect. Instead, we propose that nonrandom dispersal (e.g., habitat choice) contributes to IBE. Supporting this conclusion, we show that the few migrants between habitats are a nonrandom subset of the phenotype distribution of the source population.  相似文献   

17.
In this study, the genetic variation of perch Perca fluviatilis from 18 different sites along the Swedish coast of the Baltic Sea was assessed. There was a relative strong support for isolation by distance and the results suggest an overall departure from panmixia. The level of genetic divergence was moderate (global F(ST) = 0·04) and indications of differences in the population genetic structure between the two major basins (central Baltic Sea and Gulf of Bothnia) in the Baltic Sea were found. There was a higher level of differentiation in the central Baltic Sea compared to the Gulf of Bothnia, and the results suggest that stretches of deep water might act as barriers to gene flow in the species. On the basis of the estimation of genetic patch size, the results corroborate previous mark--recapture studies and suggest that this is a species suitable for local management. In all, the findings of this study emphasize the importance of considering regional differences even when strong isolation by distance characterize the genetic population structure of species.  相似文献   

18.
Plants are sessile organisms, often characterized by limited dispersal. Seeds and pollen are the critical stages for gene flow. Here we investigate spatial genetic structure, gene dispersal and the relative contribution of pollen vs seed in the movement of genes in a stable metapopulation of the white campion Silene latifolia within its native range. This short-lived perennial plant is dioecious, has gravity-dispersed seeds and moth-mediated pollination. Direct measures of pollen dispersal suggested that large populations receive more pollen than small isolated populations and that most gene flow occurs within tens of meters. However, these studies were performed in the newly colonized range (North America) where the specialist pollinator is absent. In the native range (Europe), gene dispersal could fall on a different spatial scale. We genotyped 258 individuals from large and small (15) subpopulations along a 60 km, elongated metapopulation in Europe using six highly variable microsatellite markers, two X-linked and four autosomal. We found substantial genetic differentiation among subpopulations (global FST=0.11) and a general pattern of isolation by distance over the whole sampled area. Spatial autocorrelation revealed high relatedness among neighboring individuals over hundreds of meters. Estimates of gene dispersal revealed gene flow at the scale of tens of meters (5–30 m), similar to the newly colonized range. Contrary to expectations, estimates of dispersal based on X and autosomal markers showed very similar ranges, suggesting similar levels of pollen and seed dispersal. This may be explained by stochastic events of extensive seed dispersal in this area and limited pollen dispersal.  相似文献   

19.
We investigated the genetic structure of Eryngium alpinum (Apiaceae) in an Alpine valley where the plant occurs in patches of various sizes. In a conservation perspective, our goal was to determine whether the valley consists of one or several genetic units. Habitat fragmentation and previous observations of restricted pollen/seed dispersal suggested pronounced genetic structure, but gene dispersal often follows a leptokurtic distribution, which may lead to weak genetic structure. We used nine microsatellite loci and two nested sampling designs (50 × 50 m grid throughout the valley and 2 × 2 m grid in two 50 × 10 m quadrats). Within the overall valley, F -statistics and Bayesian approaches indicated high genetic homogeneity. This result might be explained by: (1) underestimation of long-distance pollen/seed dispersal by in situ experiments and (2) too recent fragmentation events to build up genetic structure. Spatial autocorrelation revealed isolation by distance on the overall valley but this pattern was much more pronounced in the 50 × 10 m quadrats sampled with a 2-m mesh. This was probably associated with limited primary seed dispersal, leading to the spatial clustering of half-sibs around maternal plants. We emphasize the interest of nested sampling designs and of combining several statistical tools.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 667–677.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号