首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glucuronidation is a crucial pathway of metabolism and excretion of endogenous compounds and xenobiotics. UDP-glucuronyltransferases, UGT, catalyse transformations of bilirubine, steroids and thyroid hormones, bile acids as well as exogenous compounds, including drugs, carcinogens, environmental pollutants and nutrient components. From therapeutic point of view, the participation of UGTs in drug metabolism is of particular significance. Polymorphism of UGT1A and UGT2B genes resulted in various susceptibility of substrates to conjugation with glucuronic acid. Deactivation of xenobiotics and the following excretion of hydrophilic conjugates is a common task of glucuronidation, which should lead to detoxification. However, a lot of glucuronides were known, which expressed the comparable or even higher reactivity than that of the native compound. There are, among others, acyl glucuronides of carboxylic acids, morphine 6-O-glucuronide or retinoid glucuronides. They are able to bind cellular macromolecules with low or high strength and, as a consequence, their toxicity is saved or even increased, respectively.  相似文献   

2.
The human UDP-glucuronosyltransferase UGT1A6 is the primary phenol-metabolizing UDP-glucuronosyltransferase isoform. It catalyzes the nucleophilic attack of phenolic xenobiotics on UDP-glucuronic acid, leading to the formation of water-soluble glucuronides. The catalytic mechanism proposed for this reaction is an acid-base mechanism that involves an aspartic/glutamic acid and/or histidine residue. Here, we investigated the role of 14 highly conserved aspartic/glutamic acid residues over the entire sequence of human UGT1A6 by site-directed mutagenesis. We showed that except for aspartic residues Asp-150 and Asp-488, the substitution of carboxylic residues by alanine led to active mutants but with decreased enzyme activity and lower affinity for acceptor and/or donor substrate. Further analysis including mutation of the corresponding residue in other UGT1A isoforms suggests that Asp-150 plays a major catalytic role. In this report we also identified a single active site residue important for glucuronidation of phenols and carboxylic acid substrates by UGT1A enzyme family. Replacing Pro-40 of UGT1A4 by histidine expanded the glucuronidation activity of the enzyme to phenolic and carboxylic compounds, therefore, leading to UGT1A3-type isoform in terms of substrate specificity. Conversely, when His-40 residue of UGT1A3 was replaced with proline, the substrate specificity shifted toward that of UGT1A4 with loss of glucuronidation of phenolic substrates. Furthermore, mutation of His-39 residue of UGT1A1 (His-40 in UGT1A4) to proline led to loss of glucuronidation of phenols but not of estrogens. This study provides a step forward to better understand the glucuronidation mechanism and substrate recognition, which is invaluable for a better prediction of drug metabolism and toxicity in human.  相似文献   

3.
The glucuronidation of steroids is a major process necessary for their elimination in the bile and urine. In general, steroid glucuronides are biologically less reactive than their parent steroids. However, in some cases often associated with disease and steroid therapy, more reactive or toxic glucuronides may be formed. The concentrations of specific steroid glucuronides in the blood may also indicate hormonal imbalances and may funnction as diagnostic markers of genetic defects in steroid synthesis and metabolism. In this review, the forms of UDP glucuronosyltransferase involved in steroid glucuronidation are described in terms of their specificities, functional domains and regulation. The available evidence suggests that steroid glucuronidation is mainly carried out by members of the UGT2B subfamily which are encoded by genes containing 6 exons. Members of this subfamily exhibit a regioselectively in their glucuronidation of steroids that is mediated by domains in the amino-terminal half on the protein encoded by exons 1 and 2. Although much of this review will describe studies in the rat, preliminary evidence indicates that a similar situation may exist in humans.  相似文献   

4.
Synthesis of reference standards is needed to determine the presence and function of steroid glucuronides in the brain or other tissues, because commercial sources of steroid glucuronide standards are limited or unavailable. In the present study porcine, rat, and bovine liver microsomes were tested to evaluate their ability to glucuronidate eight neurosteroids and neuroactive steroids of various types: dehydroepiandrosterone, pregnenolone, isopregnanolone, 5alpha-tetrahydrodeoxycorticosterone, corticosterone, cortisol, beta-estradiol, and testosterone. In general, the glucuronidation efficiency of rat liver was rather poor compared with that of bovine and porcine liver microsomes. Since porcine liver apparently has a relatively large amount of dehydrogenase, its microsomes also produced dehydrogenated steroids and their glucuronides, as well as various regioisomers in which the site of glucuronidation varied. In contrast, bovine liver microsomes produced mainly a single major glucuronidation product and few dehydrogenation products and gave the best overall yield for two-third of the steroids tested. The enzymatic synthesis of five glucuronides of four steroids was carried out and the conditions, purification, and analytical methods for the glucuronidation products were optimized. The steroid glucuronides synthesized were characterized by nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography-mass spectrometry (LC-MS). The stereochemically pure steroid glucuronide conjugates were recovered in milligram amounts (yield 10-78%) and good purity (>85-90%), which is sufficient for LC-MS/MS method development and analyses of steroid glucuronides in biological matrices such as brain, urine, or plasma.  相似文献   

5.
《Life sciences》1993,53(8):PL141-PL146
Although metabolism via glucuronide conjugation has generally been considered a detoxification route for carboxylic acids, the newly discovered chemical reactivity of these conjugates, leading to covalent binding with proteins, is consistent with the toxicity observed for drugs containing the carboxylic acid moiety. Here we report that degradation rates (intramolecular rearrangement and hydrolysis) for 9 drug glucuronide metabolites show an excellent correlation (r2=0.995) with the extents of drug covalent binding to albumin in vitro. Furthermore, this binding capacity is predictable based on chemical structure of the acid and depends on the degree of substitution at the carbon alpha to the carboxylic acid. The in vivo covalent binding in humans for these drugs is also predictable (r2=0.873) when the extent of adduct formation is corrected for the measured plasma glucuronide concentrations. These results suggest that the structure of a carboxylic acid drug may predict the degree to which the corresponding acyl glucuronides will form covalent adducts that probably/possibly lead to toxicity. This information could be a useful adjunct in drug design.  相似文献   

6.
Glucuronide conjugation of xenobiotics containing a carboxylic acid moiety represents an important metabolic pathway for these compounds in humans. Several human UDP-glucuronosyltransferases (UGTs) have been shown to catalyze the formation of acyl-glucuronides, including UGT2B7, UGT1A3, and UGT1A9. In this study, recombinant expressed UGT isoforms were investigated with many structurally related carboxylic acid analogues, and the UGT rank order for catalyzing the glucuronidation of carboxylic acids was UGT2B7?UGT1A3 approximately UGT1A9. Despite being a poor substrate with UGT1A3, coumarin-3-carboxylic acid was not a substrate for any other UGT isoform tested in this study, suggesting that it could be a specific substrate for UGT1A3. Interestingly, UGT1A7 and UGT1A10 also react with several carboxylic acid aglycones. Kinetic analysis showed that UGT2B7 exhibits much higher glucuronidation efficiency (Vmax/Km) with ibuprofen, ketoprofen, and others, compared to UGT1A3. These data indicate that UGT2B7 could be the major isoform involved in the glucuronidation of carboxylic acid compounds in humans.  相似文献   

7.
Quercetin glycosides are common dietary antioxidants. In general, however, potential biological effects of the circulating plasma metabolites (e.g., glucuronide conjugates) have not been measured. We have determined the rate of glucuronidation of quercetin at each position on the polyphenol ring by human liver cell-free extracts containing UDP-glucuronosyltransferases. The apparent affinity of UDP-glucuronosyltransferase followed the order 4′- > 3′- > 7- > 3, although the apparent maximum rate of formation was for the 7-position. The 5-position did not appear to be a site for conjugation. After isolation of individual glucuronides, the inhibition of xanthine oxidase and lipoxygenase were assessed. The Ki for the inhibition of xanthine oxidase by quercetin glucuronides followed the order 4′- > 3′- > 7- > 3-, with quercetin-4′-glucuronide a particularly potent inhibitor (Ki = 0.25 μM). The glucuronides, with the exception of quercetin-3-glucuronide, were also inhibitors of lipoxygenase. Quercetin glucuronides are metabolites of quercetin in humans, and these compounds can retain some biological activity depending on conjugation position at expected plasma concentrations.  相似文献   

8.
A method for the metabolic profiling of estrogen conjugates in urine is described. It mainly involves protection of carbonyl functions by ethoximation, solid extraction on Sep-Pak C18 cartridges, a number of ion exchange chromatographic steps and quantitation by capillary GC or GC-MS. The acetate form of DEAE-Sephadex is used to initially separate estrogen conjugates into four groups; unconjugated, monoglucuronides, monosulfates and double conjugates. Monoglucuronides are further subfractionated to A- and D-ring glucuronides by carbodiimide methylation of the carboxylic functions and chromatography on the free base form of DEAE-Sephadex. Double conjugates are subfractionated to disulfates and sulfoglucuronides by solvolysis and chromatography on the acetate form of DEAE-Sephadex. After the appropriate enzymatic hydrolysis or solvolysis procedures the liberated free estrogens are purified and fractionated by a series of anion exchange chromatographic steps. Finally, following trimethylsilyl ether derivatization estrogens are analysed by capillary GC or GC-MS. The method permits the quantitation of the main conjugates of all the important estrogen metabolites including catechol estrogens. The method is precise, the sensitivity depending on the quantitation mode employed GC or SIM GC-MS. The method was applied to seven late pregnancy urines the values of which are presented.  相似文献   

9.
Hydroxylated fatty acids are important mediators of many physiological and pathophysiological processes in a variety of human tissues. Recent evidence shows that in humans many of these are ultimately excreted in the urine as the glucuronide conjugates. In this paper we describe a general approach for the chemical synthesis of glucuronide conjugate derivatives of fatty acids. The synthesis strategy employs three steps (epoxidation, hydrolysis and glucuronidation) using methyl linoleate as a model non-hydroxylated starting compound. Hydroxylated starting compounds would require only the glucuronidation step. NMR and HPLC-MS/MS experiments were used to help determine the structure of the synthesized glucuronide conjugates and to identify fragmentation product ions useful for discriminating positional isomers in biological samples. This synthetic strategy should prove useful for generating analytical standards in order to identify and quantify glucuronide metabolites of hydroxylated fatty acids in humans.  相似文献   

10.
Microsomal preparations from livers of Sprague-Dawley rats catalyze the glucuronidation of 3 alpha-hydroxy-5 beta-H (3 alpha, 5 beta) short-chain bile acids (C20-C23), predominantly at the hydroxyl group, while the glucuronidation of 3 beta, 5 beta short-chain bile acids occurs exclusively at the carboxyl group. A similar pattern of conjugation was also observed in Wistar rats having normal levels of 3-hydroxysteroid UDP-glucuronosyltransferase. Significant reductions of formation rates for hydroxyl-linked, but not carboxyl-linked, short-chain bile acid glucuronides were observed in hepatic microsomes from Wistar rats with low 3-hydroxysteroid UDP-glucuronosyltransferase activity. 3-Hydroxysteroid UDP-glucuronosyltransferase, purified to homogeneity from Sprague-Dawley liver microsomes, catalyzed the 3-O-glucuronidation of 3 alpha, 5 beta C20-23 bile acids, as well as of lithocholic and isolithocholic acids (C24). The apparent Michaelis constants (KM) for short-chain bile acids were similar to the value obtained for androsterone. 3 alpha, 5 beta-C20 and 3 beta, 5 beta-C20 competitively inhibited glucuronidation of androsterone by the purified 3-hydroxysteroid UDP-glucuronosyltransferase. Purified 17 beta-hydroxysteroid and p-nitrophenol UDP-glucuronosyltransferases did not catalyze the glucuronidation of bile acids. In addition, none of the purified transferases catalyzed the formation of carboxyl-linked bile acid glucuronides. The results show that 3-hydroxysteroid UDP-glucuronosyltransferase, an enzyme specific for 3-hydroxyl groups of androgenic steroids and some conventional bile acids, also catalyzes the glucuronidation of 3 alpha-hydroxyl (but not carboxyl) groups of 3 alpha, 5 beta short-chain bile acids.  相似文献   

11.
H M McLean  H J Lee 《Steroids》1989,54(4):421-439
Esters of prednisolone with ibuprofen and indomethacin were prepared by coupling the 21-hydroxy moiety of the glucocorticoid to the carboxylic group of the non-steroidal anti-inflammatory agents. The local and systemic anti-inflammatory activities of the conjugates were evaluated using the cotton pellet granuloma bioassay and their topical activity evaluated by the croton oil-induced ear edema assay, in male Sprague-Dawley rats. The results indicate that these conjugates possess greater local and topical anti-inflammatory activity than prednisolone. In the subacute ear edema bioassay, the conjugates displayed no discernible untoward systemic effects, unlike prednisolone and prednisolone acetate, which elicited significant adverse systemic effects, at equipotent doses. These findings suggest that the chemical coupling of prednisolone and non-steroidal anti-inflammatory agents produced compounds with enhanced anti-inflammatory potencies and reduced systemic toxicities, particularly when administered topically.  相似文献   

12.
ABSTRACT

Quercetin is a flavonoid with many physiological effects. Absorbed quercetin is rapidly conjugated in the intestinal epithelium and liver. Different positional isomers of quercetin conjugates have different physiological properties. However, the mechanisms of quercetin conjugation in the intestine are not fully clarified. We examined the regioselective quercetin conjugate formation in the intestine after oral administration of quercetin glycosides, by simultaneous sampling of blood from the portal vein and superior vena cava, and quantifying various positional isomers of quercetin glucuronides and sulfates in conscious rats. Concentrations of quercetin glucuronides were higher in blood from the portal vein than the superior vena cava, showing that glucuronidation mainly occurred in the intestine. Such differences were not observed for quercetin sulfates. Regioselectivity of the intestinal glucuronidation in quercetin hydroxyl groups were 7- >3′- >3- >4′-OH. Quercetin was mainly sulfated on 3′-OH at 30 min, but on 4′-OH at 240 min.  相似文献   

13.
We have previously found that phenanthrenic opioids, including codeine, modulate morphine glucuronidation in the rat. Here codeine and five of its derivatives were compared in their effects on the synthesis of morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) from morphine by rat liver microsomal preparations, and by primary cultures of rat hepatocytes previously incubated for 72 h with either codeine or its derivatives. Acetylcodeine and pivaloylcodeine shared the capability of the parent compound of inhibiting the synthesis of M3G by liver microsomes through a noncompetitive mechanism of action. Their IC50 were 3.25, 2.27, and 4.32 μM, respectively. Dihydrocodeine, acetyldihydrocodeine, and lauroylcodeine were ineffective. In all the experimental circumstances M6G was undetectable in the incubation medium. In primary hepatocyte cultures codeine only inhibited M3G formation, but with a lower efficacy than that observed with microsomes (IC50 20.91 vs 4.32 μM). Preliminary results show that at micromolar concentrations codeine derivatives exhibit a low rate of affinity for μ opiate receptors. In conclusion, acetyl and pivaloyl derivatives of codeine noncompetitively inhibit liver glucuronidation of morphine interacting with microsomes. This study further strengths the notion that phenanthrenic opioids can modulate morphine glucuronidation independently from their effects on μ opiate receptors.  相似文献   

14.
C H Shackleton 《Steroids》1981,38(5):485-494
By using 20 meter wall-coated open tubular glass capillary columns of high stability, analysis of methyl ester, methyloxime trimethylsilyl ether derivatives of estrogen glucuronides had been achieved. Relative retention times of five glucuronide conjugates on OV-1 stationary phase are reported. Estrogen sulfates conjugated at the 3-position were shown to be quantitatively hydrolyzed and derivatized in a single trimethylsilylation step, and this method of direct derivatization was compared to two solvolysis methods. These analytical methods could be further developed to allow rapid and quantitative analysis of estrogens in biological fluids, and may prove particularly useful for analysis of labile compounds.  相似文献   

15.
Acyl glucuronides formed from carboxylic acids can undergo hydrolysis, acyl migration, and covalent binding to proteins. In buffers at physiological pH, the degradation of acylglucuronide of a chiral NSAID, carprofen, consisted mainly of acyl migration. Acidic pH reduced hydrolysis and acyl migration, thus stabilizing the carprofen acyl glucuronides. Addition of human serum albumin (HSA) led to an increased hydrolysis of the conjugates of both enantiomers. This protein protected R-carprofen glucuronide from migration and therefore improved its overall stability. Hydrolysis was stereoselective in favor of the S conjugate. The protein domains and the amino acid residues likely to be responsible for the hydrolytic activity of HSA were deduced from the results of various investigations: competition with probes specific of binding sites, effects of pH and of chemical modifications of albumin. Dansylsarcosine (DS), a specific ligand of site II of HSA, impaired the hydrolysis, whereas dansylamide (DNSA) and digoxin, which are specific ligands of sites I and III, respectively, had no effect. The extent of hydrolysis by HSA strongly increased with pH, indicating the participation of basic amino acids in this process. The results obtained with chemically modified HSA suggest the major involvement of Tyr and Lys residues in the hydrolysis of glucuronide of S-carprofen, and of other Lys residues for that of its diastereoisomer.  相似文献   

16.
Mano N  Nishimura K  Narui T  Ikegawa S  Goto J 《Steroids》2002,67(3-4):257-262
Recent studies have suggested that bile acid acyl glucuronides form covalently bound protein adducts which may cause hypersensitivity reactions and increased morbidity in patients. Although the preferential biosynthesis of the acyl glucuronides has been known, the characterization of hepatic bile acid acyl glucuronosyltransferase has not yet been clearly elucidated. We have investigated the substrate specificity of the hepatic bile acid acyl glucuronosyltransferase using five common bile acids as substrates. The glucuronidation rate was dependent on the number of the hydroxy group on the steroid nucleus and mono-hydroxylated lithocholic acid, the more lipophilic common bile acid, was most effectively metabolized into its acyl glucuronide. The tri-hydroxylated cholic acid, the more water-soluble common bile acid, barely transformed into its glucuronide. Results showed decreasing of the initial velocity of the acyl glucuronidation with increasing of the concentration of substrate, lithocholic acid, owing to the substrate inhibition of the hepatic bile acid acyl glucuronosyltransferase. The substrate analogues, glycine and taurine conjugated bile acids, which exist in the body fluids in high concentrations, also inhibited the enzyme's activity. In addition, enzymatic reaction products, bile acid acyl glucuronides, also inhibited the activity. These inhibitory mechanisms may be responsible for the low concentration of bile acid acyl glucuronides in urine and may be an important detoxification system in the body.  相似文献   

17.
Xenobiotic carboxylic acids, that via their metabolites covalently modify proteins, have been associated with serious side effects in man. Such reactive metabolites may be acyl glucuronides or alternatively, the corresponding acyl-CoA thioesters. In this study, the reaction of a model xenobiotic acyl-CoA, the naproxen-CoA, with human serum albumin (HSA), was characterized by high-performance liquid chromatography employing fluorescence and mass spectrometric detection. One mM naproxen-CoA was incubated for 6h with HSA (0.45 mM) at 37 degrees C in a 0.1M phosphate buffer (pH 7.4). The tryptic digest of the reduced and alkylated protein was analyzed in order to identify the amino acids in the sequence that were covalently modified with naproxen. Fluorescent peptides, that represented naproxen-modified peptides, were characterized using HPLC-MS-MS and HPLC-MS in zoom scan mode, which provided information on the structure and the charge of the modified peptides. The naproxen-CoA reacted predominantly with lysine 199, lysine 541, and lysine 351, which was in agreement with the binding pattern that has previously been reported for the reactive acyl glucuronides and their reaction with HSA.  相似文献   

18.
A method was developed to resolve radiolabeled estradiol-17β and its various metabolites in biological fluids and tissues. After a rapid initial clean-up step, samples were analyzed with the sequential use of reversed-phase and normal-phase high-performance liquid chromatographic systems. Approximately 25 conjugated and non-conjugated standards could be resolved by the combined use of six systems. Radiolabeled parent compound and metabolites from biological samples were separated and tentatively identified by comparing their retention times to those of known standards. The method was found to be reproducible and quantitative for the majority of the estrogens and their conjugates, and semiquantitative for some of the more polar and di-conjugated estrogens.  相似文献   

19.
It is suggested that formation of more polar metabolites of all-trans-retinoic acid (atRA) via oxidative pathways limits its biological activity. In this report, we investigated the biotransformation of oxidized products of atRA via glucuronidation. For this purpose, we synthesized 4-hydroxy-RA (4-OH-RA) in radioactive and nonradioactive form, 4-hydroxy-retinyl acetate (4-OH-RAc), and 5,6-epoxy-RA, all of which are major products of atRA oxidation. Glucuronidation of these retinoids by human liver microsomes and human recombinant UDP-glucuronosyltransferases (UGTs) was characterized and compared with the glucuronidation of atRA. The human liver microsomes glucuronidated 4-OH-RA and 4-OH-RAc with 6- and 3-fold higher activity than atRA, respectively. Analysis of the glucuronidation products showed that the hydroxyl-linked glucuronides of 4-OH-RA and 4-OH-RAc were the major products, as opposed to the formation of the carboxyl-linked glucuronide with atRA, 4-oxo-RA, and 5,6-epoxy-RA. We have also determined that human recombinant UGT2B7 can glucuronidate atRA, 4-OH-RA, and 4-OH-RAc with activities similar to those found in human liver microsomes. We therefore postulate that this human isoenzyme, which is expressed in human liver, kidney, and intestine, plays a key role in the biological fate of atRA. We also propose that atRA induces its own oxidative metabolism via a cytochrome P450 (CYP26) and is further biotransformed into glucuronides via UGT-mediated pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号