首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of Salmonella typhimurium 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate kinase (HMPP kinase) and its complex with substrate HMP have been determined. HMPP kinase catalyzes two separate ATP-dependent phosphorylation reactions and is an essential enzyme in the thiamin biosynthetic pathway. HMPP kinase is a homodimer with one active site per monomer and is structurally homologous to members of the ribokinase family. A comparison of the structure of HMPP kinase with other members of the ribokinase family suggests an evolutionary progression. Modeling studies suggest that HMPP kinase catalyzes both of its phosphorylation reactions using in-line displacement mechanisms. We propose that the active site accommodates the two separate reactions by providing two different binding modes for the phosphate group of HMP phosphate.  相似文献   

2.
ATP-binding cassette (ABC) transporters are responsible for the transport of a wide variety of water-soluble molecules and ions into prokaryotic cells. In Gram-negative bacteria, periplasmic-binding proteins deliver ions or molecules such as thiamin to the membrane-bound ABC transporter. The gene for the thiamin-binding protein tbpA has been identified in both Escherichia coli and Salmonella typhimurium. Here we report the crystal structure of TbpA from E. coli with bound thiamin monophosphate. The structure was determined at 2.25 A resolution using single-wavelength anomalous diffraction experiments, despite the presence of nonmerohedral twinning. The crystal structure shows that TbpA belongs to the group II periplasmic-binding protein family. Equilibrium binding measurements showed similar dissociation constants for thiamin, thiamin monophosphate, and thiamin pyrophosphate. Analysis of the binding site by molecular modeling demonstrated how TbpA binds all three forms of thiamin. A comparison of TbpA and thiaminase-I, a thiamin-degrading enzyme, revealed structural similarity between the two proteins, especially in domain 1, suggesting that the two proteins evolved from a common ancestor.  相似文献   

3.
Cyclophilins are a family of proteins that exhibit peptidyl-prolyl cis-trans isomerase activity and bind the immunosuppressive agent cyclosporin A (CsA). Brugia malayi is a filarial nematode parasite of humans, for which a cyclophilin-like domain was identified at the N-terminal of a protein containing 843 amino acid residues. There are two differences in sequence in the highly conserved CsA binding site: A histidine and a lysine replace a tryptophan and an alanine, respectively. The crystal structure of this domain has been determined by the molecular replacement method and refined to an R-factor of 16.9% at 2.15 A resolution. The overall structure is similar to other cyclophilins; however, major differences occur in two loops. Comparison of the CsA binding site of this domain with members of the cyclophilin family shows significant structural differences, which can account for the reduced sensitivity of the Brugia malayi protein to inhibition by CsA.  相似文献   

4.
The F1-ATP synthase atp operon in the proteobacterium Rhodobacter blasticus contains six open reading frames, encoding six hypothetical proteins. Five of these subunits, in the stoichiometry (alphabeta)3gamma delta epsilon make up the catalytic F1-ATP synthase complex similarly in bacteria, chloroplasts and mitochondria. The sixth gene of the R. blasticus atp operon, urf6, shows very little sequence homology to any protein of known structure or function. The gene has previously been cloned, the product (called majastridin) has been heterologously expressed in Escherichia coli, and purified to high homogeneity [M. Brosché, I. Kalbina, M. Arnfelt, G. Benito, B.G. Karlsson, A. Strid, Occurrence, overexpression and partial purification of the protein (majastridin) corresponding to the URF6 gene of the Rhodobacter blasticus atp operon, Eur. J. Biochem. 255 (1998) 87-92]. We have solved the X-ray crystal structure and refined a model of majastridin to atomic resolution. Here we present the crystal structures of apo-majastridin and the complex of majastridin with Mn2+ and UDP and show that it has extensive structural similarity to glycosyltransferases (EC 2.4). This is the first structure determined from a new group of distantly related bacterial proteins of at least six members. They share the identical amino acids that bind Mn2+ and a triplet of amino acids in the putative sugar-binding site.  相似文献   

5.
The crystal structure of the common house mite (Dermatophagoides sp.) Der p 2 allergen was solved at 2.15 A resolution using the MAD phasing technique, and refined to an R-factor of 0.209. The refined atomic model, which reveals an immunoglobulin-like tertiary fold, differs in important ways from the previously described NMR structure, because the two beta-sheets are significantly further apart and create an internal cavity, which is occupied by a hydrophobic ligand. This interaction is structurally reminiscent of the binding of a prenyl group by a regulatory protein, the Rho guanine nucleotide exchange inhibitor. The crystal structure suggests that binding of non-polar molecules may be essential to the physiological function of the Der p 2 protein.  相似文献   

6.
The crystal structure of the product of the Bacillus subtilis ykuD gene was solved by the multiwavelength anomalous dispersion (MAD) method and refined using data to 2.0 A resolution. The ykuD protein is a representative of a distinctly prokaryotic and ubiquitous family found among both pathogenic and nonpathogenic Gram-positive and Gram-negative bacteria. The deduced amino acid sequence reveals the presence of an N-terminal LysM domain, which occurs among enzymes involved in cell wall metabolism, and a novel, putative catalytic domain with a highly conserved His/Cys-containing motif of hitherto unknown structure. As the wild-type protein did not crystallize, a double mutant was designed (Lys117Ala/Gln118Ala) to reduce excess surface conformational entropy. As expected, the structure of the LysM domain is similar to the NMR structure reported for an analogous domain from Escherichia coli murein transglycosylase MltD. The molecular model also shows that the 112-residue-long C-terminal domain has a novel tertiary fold consisting of a beta-sandwich with two mixed sheets, one containing five strands and the other, six strands. The two beta-sheets form a cradle capped by an alpha-helix. This domain contains a putative catalytic site with a tetrad of invariant His123, Gly124, Cys139, and Arg141. The stereochemistry of this active site shows similarities to peptidotransferases and sortases, and suggests that the enzymes of the ykuD family may play an important role in cell wall biology.  相似文献   

7.
This is the first crystal structure of a carbohydrate induced dimer of phospholipase A(2) (PLA(2)). This is an endogenous complex formed between two PLA(2) molecules and two mannoses. It was isolated from Krait venom (Bungarus caeruleus) and crystallized as such. The complete amino acid sequence of PLA(2) was determined using cDNA method. Three-dimensional structure of the complex has been solved with molecular replacement method and refined to a final R-factor of 0.192 for all the data in the resolution range 20.0-2.1A. The presence of mannose molecules in the protein crystals was confirmed using dinitrosalicylic acid test and the molecular weight of the dimer was verified with MALDI-TOF. As indicated by dynamic light scattering and analytical ultracentrifugation the dimer was also stable in solution. The good quality non-protein electron density at the interface of two PLA(2) molecules enabled us to model two mannoses. The mannoses are involved extensively in interactions with protein atoms of both PLA(2) molecules. Some of the critical amino acid residues such as Asp 49 and Tyr 31, which are part of the substrate-binding site, are found facing the interface and interacting with mannoses. The structure of the complex clearly shows that the dimerization is caused by mannoses and it results in the loss of enzymatic activity.  相似文献   

8.
The GATE-16 protein participates in intra-Golgi transport and can associate with the N-ethylmaleimide-sensitive fusion protein and with Golgi SNAREs. The yeast ortholog of GATE-16 is the autophagocytosis factor Aut7p. GATE-16 is also closely related to the GABA receptor-associated protein (GABARAP), which has been proposed to cluster neurotransmitter receptors by mediating interaction with the cytoskeleton, and to the light chain-3 subunit of the neuronal microtubule-associated protein complex. Here, we present the crystal structure of GATE-16 refined to 1.8 A resolution. GATE-16 contains a ubiquitin fold decorated by two additional N-terminal helices. Proteins with strong structural similarity but no detectable sequence homology to GATE-16 include Ras effectors that mediate diverse downstream functions, but each interacts with Ras by forming pseudo-continuous beta-sheets. The GATE-16 surface suggests that it binds its targets in a similar manner. Moreover, a second potential protein-protein interaction site on GATE-16 may explain the adapter activity observed for members of the GATE-16 family.  相似文献   

9.
The crystal structure of malate dehydrogenase from the hyperthermophilic archaeon Archeoglobus fulgidus, in complex with its cofactor NAD, was solved at 2.9A resolution. The crystal structure shows a compact homodimer with one coenzyme bound per subunit. The substrate binding site is occupied by a sulphate ion. In order to gain insight into adaptation mechanisms, which allow the protein to be stable and active at high temperatures, the 3D structure was compared to those of several thermostable and hyperthermostable homologues, and to halophilic malate dehydrogenase. The hyperthermostable A. fulgidus MalDH protein displays a reduction of the solvent-exposed surface, an optimised compact hydrophobic core, a high number of hydrogen bonds, and includes a large number of ion pairs at the protein surface. These features occur concomitantly with a reduced number of residues in the protein subunit, due to several deletions in loop regions. The loops are further stiffened by ion pair links with secondary structure elements. A. fulgidus malate dehydrogenase is the only dimeric protein known to date that belongs to the [LDH-like] MalDH family. All the other known members of this family are homo-tetramers. The crystal structures revealed that the association of the dimers to form tetramers is prevented by several deletions, taking place at the level of two loops that are known to be essential for the tetramerisation process within the LDH and [LDH-like] MalDH enzymes.  相似文献   

10.
Neutral protease from Bacillus cereus exhibits a 73% amino acid sequence homology to thermolysin, for which an accurate crystal structure exists. The B. cereus enzyme is, however, markedly less thermostable. The neutral protease was crystallized and diffraction data to 3.0 A resolution were recorded by oscillation photography. The crystal structure was solved by molecular replacement methods using thermolysin as a trial molecule. The solution was improved by rigid-body refinement and model rebuilding into electron density omit-maps. The atomic co-ordinates were refined to R = 21.7% at 3.0 A resolution. Comparison of the resultant model with the thermolysin structure shows that the two enzymes are very similar with a root-mean-square deviation between equivalent C alpha-atoms of 0.88 A. The gamma-turn found in thermolysin is transformed into a beta-turn in the neutral protease by the insertion of a glycine residue. There appear to be no contributions to the enhanced thermostability of thermolysin from additional salt bridges, whereas contributions in the form of extra hydrogen bonding interactions could be important. Other factors that may affect thermostability include the two glycine to alanine exchanges and perturbations in the environment of the double calcium site.  相似文献   

11.
BACKGROUND: Many proteins undergo posttranslational modifications involving covalent attachment of lipid groups. Among them is palmitoylation, a dynamic, reversible process that affects trimeric G proteins and Ras and constitutes a regulatory mechanism for signal transduction pathways. Recently, an acylhydrolase previously identified as lysophospholipase has been shown to function as an acyl protein thioesterase, which catalyzes depalmitoylation of Galpha proteins as well as Ras. Its amino acid sequence suggested that the protein is evolutionarily related to neutral lipases and other thioesterases, but direct structural information was not available. RESULTS: We have solved the crystal structure of the human putative Galpha-regulatory protein acyl thioesterase (hAPT1) with a single data set collected from a crystal containing the wild-type protein. The phases were calculated to 1.8 A resolution based on anomalous scattering from Br(-) ions introduced in the cryoprotectant solution in which the crystal was soaked for 20 s. The model was refined against data extending to a resolution of 1.5 A to an R factor of 18.6%. The enzyme is a member of the ubiquitous alpha/beta hydrolase family, which includes other acylhydrolases such as the palmitoyl protein thioesterase (PPT1). CONCLUSIONS: The human APT1 is closely related to a previously described carboxylesterase from Pseudomonas fluorescens. The active site contains a catalytic triad of Ser-114, His-203, and Asp-169. Like carboxylesterase, hAPT1 appears to be dimeric, although the mutual disposition of molecules in the two dimers differs. Unlike carboxylesterase, the substrate binding pocket and the active site of hAPT1 are occluded by the dimer interface, suggesting that the enzyme must dissociate upon interaction with substrate.  相似文献   

12.
13.
Escherichia coli (E. coli) protein 3-methyladenine-DNA glycosylase II (AlkA) functions primarily by removing alkylation damage from duplex and single stranded DNA. A crystal structure of AlkA was refined to 2.0 A resolution. This structure in turn was used to refine an AlkA-hypoxanthine (substrate) complex structure to 2.4 A resolution. The complex structure shows hypoxanthine located in AlkA's active site stacked between residues W218 and Y239. The structural analysis of the AlkA and AlkA-hypoxanthine structures indicate that free hypoxanthine binding in the active site may inhibit glycosylase activity.  相似文献   

14.
Yeast aspartyl-tRNA synthetase, a dimer of molecular weight 125,000, and two molecules of its cognate tRNA (Mr = 24160) cocrystallize in the cubic space group I432 (a = 354 A). The crystal structure was solved to low resolution using neutron and X-ray diffraction data. Neutron single crystal diffraction data were collected in five solvents differing by their D2O content in order to use the contrast variation method to distinguish between the protein and tRNA. The synthetase was first located at 40 A resolution using the 65% D2O neutron data (tRNA matched) tRNA molecules were found at 20 A resolution using both neutron and X-ray data. The resulting model was refined against 10 A resolution X-ray data, using density modification and least-squares refinement of the tRNA positions. The crystal structure solved without a priori phase knowledge, was confirmed later by isomorphous replacement. The molecular model of the complex is in good agreement with results obtained in solution by probing the protected part of the tRNA by chemical reagents.  相似文献   

15.
Studies on thiamin biosynthesis have so far been achieved in eubacteria, yeast and plants, in which the thiamin structure is formed as thiamin phosphate from a thiazole and a pyrimidine moiety. This condensation reaction is catalyzed by thiamin phosphate synthase, which is encoded by the thiE gene or its orthologs. On the other hand, most archaea do not seem to have the thiE gene, but instead their thiD gene, coding for a 2-methyl-4-amino-5-hydroxymethylpyrimidine (HMP) kinase/HMP phosphate kinase, possesses an additional C-terminal domain designated thiN. These two proteins, ThiE and ThiN, do not share sequence similarity. In this study, using recombinant protein from the hyperthermophile archaea Pyrobaculum calidifontis, we demonstrated that the ThiN protein is an analog of the ThiE protein, catalyzing the formation of thiamin phosphate with the release of inorganic pyrophosphate from HMP pyrophosphate and 4-methyl-5-β-hydroxyethylthiazole phosphate (HET-P). In addition, we found that the ThiN protein can liberate an inorganic pyrophosphate from HMP pyrophosphate in the absence of HET-P. A structure model of the enzyme–product complex of P. calidifontis ThiN domain was proposed on the basis of the known three-dimensional structure of the ortholog of Pyrococcus furiosus. The significance of Arg320 and His341 residues for thiN-coded thiamin phosphate synthase activity was confirmed by site-directed mutagenesis. This is the first report of the experimental analysis of an archaeal thiamin synthesis enzyme.  相似文献   

16.
The crystal structures of the natural and recombinant antiviral lectin scytovirin (SVN) were solved by single-wavelength anomalous scattering and refined with data extending to 1.3 A and 1.0 A resolution, respectively. A molecule of SVN consists of a single chain 95 amino acids long, with an almost perfect sequence repeat that creates two very similar domains (RMS deviation 0.25 A for 40 pairs of Calpha atoms). The crystal structure differs significantly from a previously published NMR structure of the same protein, with the RMS deviations calculated separately for the N- and C-terminal domains of 5.3 A and 3.7 A, respectively, and a very different relationship between the two domains. In addition, the disulfide bonding pattern of the crystal structures differs from that described in the previously published mass spectrometry and NMR studies.  相似文献   

17.
The crystal structures of alpha-galactosidase from the mesophilic fungus Trichoderma reesei and its complex with the competitive inhibitor, beta-d-galactose, have been determined at 1.54 A and 2.0 A resolution, respectively. The alpha-galactosidase structure was solved by the quick cryo-soaking method using a single Cs derivative. The refined crystallographic model of the alpha-galactosidase consists of two domains, an N-terminal catalytic domain of the (beta/alpha)8 barrel topology and a C-terminal domain which is formed by an antiparallel beta-structure. The protein contains four N-glycosylation sites located in the catalytic domain. Some of the oligosaccharides were found to participate in inter-domain contacts. The galactose molecule binds to the active site pocket located in the center of the barrel of the catalytic domain. Analysis of the alpha-galactosidase- galactose complex reveals the residues of the active site and offers a structural basis for identification of the putative mechanism of the enzymatic reaction. The structure of the alpha-galactosidase closely resembles those of the glycoside hydrolase family 27. The conservation of two catalytic Asp residues, identified for this family, is consistent with a double-displacement reaction mechanism for the alpha-galactosidase. Modeling of possible substrates into the active site reveals specific hydrogen bonds and hydrophobic interactions that could explain peculiarities of the enzyme kinetics.  相似文献   

18.
Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) is the target for the sulfonylurea herbicides, which act as potent inhibitors of the enzyme. Chlorsulfuron (marketed as Glean) and sulfometuron methyl (marketed as Oust) are two commercially important members of this family of herbicides. Here we report crystal structures of yeast AHAS in complex with chlorsulfuron (at a resolution of 2.19 A), sulfometuron methyl (2.34 A), and two other sulfonylureas, metsulfuron methyl (2.29 A) and tribenuron methyl (2.58 A). The structures observed suggest why these inhibitors have different potencies and provide clues about the differential effects of mutations in the active site tunnel on various inhibitors. In all of the structures, the thiamin diphosphate cofactor is fragmented, possibly as the result of inhibitor binding. In addition to thiamin diphosphate, AHAS requires FAD for activity. Recently, it has been reported that reduction of FAD can occur as a minor side reaction due to reaction with the carbanion/enamine of the hydroxyethyl-ThDP intermediate that is formed midway through the catalytic cycle. Here we report that the isoalloxazine ring has a bent conformation that would account for its ability to accept electrons from the hydroxyethyl intermediate. Most sequence and mutation data suggest that yeast AHAS is a high-quality model for the plant enzyme.  相似文献   

19.
20.
The structure of the saccharide-binding site of concanavalin A.   总被引:15,自引:1,他引:14       下载免费PDF全文
A complex of concanavalin A with methyl alpha-D-mannopyranoside has been crystallized in space group P212121 with a = 123.9 A, b = 129.1 A and c = 67.5 A. X-ray diffraction intensities to 2.9 A resolution have been collected on a Xentronics/Nicolet area detector. The structure has been solved by molecular replacement where the starting model was based on refined coordinates of an I222 crystal of saccharide-free concanavalin A. The structure of the saccharide complex was refined by restrained least-squares methods to an R-factor value of 0.19. In this crystal form, the asymmetric unit contains four protein subunits, to each of which a molecule of mannoside is bound in a shallow crevice near the surface of the protein. The methyl alpha-D-mannopyranoside molecule is bound in the C1 chair conformation 8.7 A from the calcium-binding site and 12.8 A from the transition metal-binding site. A network of seven hydrogen bonds connects oxygen atoms O-3, O-4, O-5 and O-6 of the mannoside to residues Asn14, Leu99, Tyr100, Asp208 and Arg228. O-2 and O-1 of the mannoside extend into the solvent. O-2 is hydrogen-bonded through a water molecule to an adjacent asymmetric unit. O-1 is not involved in any hydrogen bond and there is no fixed position for its methyl substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号