首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Balloon injury of the arterial wall induces increased vascular smooth cell proliferation, enhanced elastic recoil, and abnormalities in thrombosis, each of which contribute to regrowth of intima and the lesion of restenosis. Several gene transfer approaches have been used to inhibit such intimal smooth muscle cell growth. In this report, adenoviral gene transfer of beta-interferon (beta-IFN) was analyzed in a porcine model of balloon injury to determine whether a secreted growth inhibitory protein might affect the regrowth of vascular smooth muscle cells in vitro and in arteries. MATERIALS AND METHODS: An adenoviral vector encoding beta-interferon (ADV-beta-IFN) was prepared and used to infect porcine vascular smooth muscle cells in a porcine balloon injury model. Its antiproliferative effect was analyzed in vitro and in vivo. RESULTS: Expression of recombinant porcine beta-IFN in vascular smooth muscle cells reduced cell proliferation significantly in vitro, and supernatants derived from the beta-IFN vector inhibited vascular smooth muscle cell proliferation relative to controls. When introduced into porcine arteries after balloon injury, a reduction in cell proliferation was observed 7 days after gene transfer measured by BrdC incorporation (ADV-delta E1 arteries 14.5 +/- 1.2%, ADV-beta IFN 6.8 +/- 0.8%, p < 0.05, unpaired, two-tailed t-test). The intima-to-media area ratio was also reduced (nontransfected arteries, 0.70 +/- 0.05; ADV-delta E1 infected arteries, 0.69 +/- 0.06; ADV-beta-IFN infected arteries, 0.53 +/- 0.03; p < 0.05, ANOVA with Dunnett t-test). No evidence of organ toxicity was observed, and regrowth of the endothelial cell surface was observed 3-6 weeks after balloon injury. CONCLUSIONS: Gene transfer of an adenoviral vector encoding beta-IFN into balloon-injured arteries reduced vascular smooth muscle proliferation and intimal formation. Expression of this gene product may have potential application for the treatment of vascular proliferative diseases.  相似文献   

2.

Background

As a key subunit of the exocyst complex, Exo70 has highly conserved sequence and is widely found in yeast, mammals, and plants. In yeast, Exo70 mediates the process of exocytosis and promotes anchoring and integration of vesicles with the plasma membrane. In mammalian cells, Exo70 is involved in maintaining cell morphology, cell migration, cell connection, mRNA splicing, and other physiological processes, as well as participating in exocytosis. However, Exo70’s function in mammalian cells has yet to be fully recognized. In this paper, the expression of Exo70 and its role in cell migration were studied in a rat vascular smooth muscle cell line A7r5.

Methods

Immunofluorescent analysis the expression of Exo70, α-actin, and tubulin in A7r5 cells showed a co-localization of Exo70 and α-actin, we treated the cells with cytochalasin B to depolymerize α-actin, in order to further confirm the co-localization of Exo70 and α-actin. We analyzed Exo70 co-localization with actin at the edge of migrating cells by wound-healing assay to establish whether Exo70 might play a role in cell migration. Next, we analyzed the migration and invasion ability of A7r5 cells before and after RNAi silencing through the wound healing assay and transwell assay.

Results

The mechanism of interaction between Exo70 and cytoskeleton can be clarified by the immunoprecipitation techniques and wound-healing assay. The results showed that Exo70 and α-actin were co-localized at the leading edge of migrating cells. The ability of A7r5 to undergo cell migration was decreased when Exo70 expression was silenced by RNAi. Reducing Exo70 expression in RNAi treated A7r5 cells significantly lowered the invasion and migration ability of these cells compared to the normal cells. These results indicate that Exo70 participates in the process of A7r5 cell migration.

Conclusions

This research is importance for the study on the pathological process of vascular intimal hyperplasia, since it provides a new research direction for the treatment of cardiovascular diseases such as atherosclerosis and restenosis after balloon angioplasty.
  相似文献   

3.
Matrix metalloproteinases (MMPs) play a vital role in vasculature response to hemodynamic stimuli via the degradation of extracellular matrix substrates. In this study, we investigated the putative role of cyclic strain-induced endothelial MMP-2 (and MMP-9) expression and release in modulating bovine aortic smooth muscle cell (BASMC) migration in vitro. Equibiaxial cyclic strain of bovine aortic endothelial cells (BAECs) leads to elevation in cellular MMP-2 (and MMP-9) expression, activity, and secretion into conditioned media, events which were time- and force-dependent. Subsequent incubation of BASMCs with conditioned media from chronically strained BAECs (5%, 24 h) significantly reduces BASMC migration (38+/-6%), an inhibitory effect which could be completely reversed by targeted siRNA 'knock-down' of MMP-2 (but not MMP-9) expression and activity in BAECs. Moreover, inhibition of strain-mediated MMP-2 expression in BAECs by protein tyrosine kinase (PTK) blockade with genistein (50 microM) was also found to completely reverse this inhibitory effect on BASMC migration. Finally, direct supplementation of recombinant MMP-2 into the BASMC migration assay was found to have no significant effect on migration. However, the effect on BASMC migration of MMP-2 siRNA transfection in BAECs could be reversed by supplementation of recombinant MMP-2 into BAEC media prior to (and for the duration of) strain. These findings reveal a potentially novel role for strain-induced endothelial MMP-2 in regulating vascular SMC migration.  相似文献   

4.
The endothelial and medial layers are generally presumed to play an important role in the appearance and development of intimal hyperplasia. We have carried out a short-, media- and long-term study of the morphological changes taking place in the common iliac artery of rats after surgical removal of the adventitial layer. Our aim has been to assess the likely role played by this layer in the development of intimal hyperplasia. Our results show recurrent periods of cellular desquamation and almost complete absence of hyperplastic response during the first two months. After three months three is a slow process of endothelialization which is completed by the 6th month and persists one year after adventitial resection. Thus, adventitial resection seems to cause instability at the subendothelial bed level, not allowing the junction and embedding of endothelial cells nor the development of intimal hyperplasia. This lack of hyperplasia might also result from the fact that the endothelial desquamation process does not involve cellular rupture, which would prevent mitogenic-factor release. After morphological repair of the endothelium, a slow morphofunctional recovery of the artery takes place.  相似文献   

5.
To investigate the role of insulin signaling pathways in migration, proliferation, and inflammation of vascular smooth muscle cells (VSMCs), we examined the expression of active components of the phosphatidyl inositol 3 (PI-3) kinase (p-Akt) and mitogen-activated protein kinase (MAPK) (p-Erk) in primary cultures of VSMCs from human coronary arteries. VSMCs were treated in a dose-response manner with insulin (0, 1, 10, and 100 nM) for 20 min, and Akt and Erk phosphorylation were measured by Western blot analysis. In separate experiments, we evaluated the effect of 200 μM palmitate, in the presence and absence of 8 μM pioglitazone, on insulin-stimulated (100 nM for 20 min) Akt and Erk phosphorylation. The phosphorylation of Akt and Erk in VSMCs exhibited a dose dependency with a three- to fourfold increase, respectively, at the highest dose (100 nM). In the presence of palmitate, insulin-induced Akt phosphorylation was completely abolished, and there was a threefold increase in p-Erk. With addition of pioglitazone, the phosphorylation of Akt by insulin remained unchanged, whereas insulin-stimulated Erk phosphorylation was reduced by pioglitazone. These data in VSMCs indicate that high palmitate decreases insulin-stimulated Akt phosphorylation and stimulates MAPK, whereas preexposure peroxisome proliferator-activated receptor-γ agonist pioglitazone preserves Akt phosphorylation and simultaneously attenuates MAPK signaling. Our results suggest that metabolic and mitogenic insulin signals have different sensitivity, are independently regulated, and may play a role in arterial smooth muscle cells migration, proliferation, and inflammation in conditions of acute hyperinsulinemia.  相似文献   

6.
UV-C照射诱导体外血管平滑肌细胞凋亡模型的建立   总被引:3,自引:0,他引:3  
Li XD  Li J 《生理学报》1999,(2):234-239
应用常规细胞培养超净台紫外消毒灯(220W,220V,50Hz)发射的UV-C波段的紫外光源(254nm),垂直照射距离其10cm处的大鼠主动脉平滑肌细胞,发现经照射后细胞出现典型的凋亡形态学改变,如细胞变圆,染色质浓缩,细胞膜出泡,出现凋亡小体等;细胞面积,核面积及核/胞面积比均显著降低;且提取细胞DNA的琼脂糖凝胶电泳呈现梯状图谱。从形态学和生化指标方面证明了UV-C照射可诱导体外血管SMCs  相似文献   

7.
Interactions of vascular smooth muscle cells (VSMC) with monocytes recruited to the arterial wall at a site of injury, with resultant modulation of VSMC growth and migration, are central to the development of vascular intimal thickening. Urokinase-type plasminogen activator (uPA) expressed by monocytes is a potent chemotactic factor for VSMC and might serve for the acceleration of vascular remodeling. In this report, we demonstrate that coculture of human VSMC with freshly isolated peripheral blood-derived human monocytes results in significant VSMC migration that increases during the coculture period. Accordingly, VSMC adhesion was inhibited with similar kinetics. VSMC proliferation, however, was not affected and remained at the same basal level during the whole period of coculture. The increase of VSMC migration in coculture was equivalent to the uPA-induced migration of monocultured VSMC and was blocked by addition into coculture of soluble uPAR (suPAR). Analysis of uPA and uPAR expression in cocultured cells demonstrated that monocytes are a major source of uPA, whose expression increases in coculture five-fold, whereas VSMC display an increased expression of cell surface-associated uPAR. These findings indicate that upregulated uPA production by monocytes following vascular injury acts most likely as an endogenous activator of VSMC migration contributing to the remodeling of vessel walls.  相似文献   

8.
The rotating frame nuclear magnetic resonance relaxation rate R(1rho) in the blood and cell lysate was studied at 4.7T to provide reference values for in vivo modeling and to address the mechanisms contributing to net relaxation. A strong dependence on oxygenation, hematocrit, and spin lock field strength B(1) (0.2-1.6G) was observed in whole blood, whereas in lysate the effects were severely attenuated. The results were further compared to transverse relaxation rate R(2). A good agreement in low-field asymptotes of these two relaxation rates was found. R(1rho) field dispersion was fitted to Lorenzian line shape and resulted in correlation times around 40 micros. The dispersion behavior was related to motional properties of intracellular hemoglobin and effects of susceptibility shift interface across the cell membrane induced by compartmentalization of Hb into cells in blood.  相似文献   

9.
10.
Zou J  Huang Y  Cao K  Yang G  Yin H  Len J  Hsieh TC  Wu JM 《Life sciences》2000,68(2):153-163
The ability of resveratrol to inhibit vascular intimal thickening was tested in an experimental model in which endothelial denudation was performed in the normal rabbit iliac artery. Resveratrol (2 approximately 4mg/ kg/d) was administered intragastrically for 5 weeks beginning 1 week before denudation. At the higher concentration of resveratrol, the intimal hyperplasia of injured vascular wall was effectively inhibited; the intimal proliferation index also was significantly less than that in the untreated control group (0.28 +/- 0.07 vs 0.41 +/- 0.13, respectively, p<0.01); the relative luminal area increased from 0.38 +/- 0.06 in the untreated control group to 0.53 +/- 0.10 in the resveratrol treatment group (p < 0.001); and the count of smooth muscle cells in the thickened intima was statistically significantly reduced in the high dose resveratrol treatment group than that in the untreated group (1,115 +/- 510 vs 1,796 +/- 963, respectively, p < 0.05). Resveratrol added to the culture media of cultured rabbit vascular smooth muscle cells inhibited DNA synthesis in a dose-dependent manner. These results showing that resveratrol is capable of inhibiting intimal hyperplasia of injured artery raise the possibility that this polyphenol might have clinical potential in prevention and treatment of restenosis after angioplasty.  相似文献   

11.
Smooth muscle cell (SMC) migration plays an important role in restenosis after angioplasty. Myosin phosphorylation is necessary for cell migration. Fasudil is an inhibitor of protein kinases, including myosin light chain kinase and Rho associated kinase, thereby inhibiting myosin phosphorylation, and it has been clinically used to prevent vasospasm following subarachnoid hemorrage. Based on these findings, we examined the anti-migrative action of fasudil. In SMC (SM-3), fasudil (1-100 microM) inhibited SMC migration in a dose-dependent manner (p < 0.001). Fasudil suppressed actin stress fiber formation dose dependently. In rabbit carotid artery, fasudil (10 mg/kg/day) markedly reduced intimal hyperplasia 14 days following balloon injury. Cell kinetic study showed that fasudil did not affect proliferation but enhanced cell loss in the media after injury. We concluded that fasudil reduced neointimal formation after balloon injury through both inhibiting migration and enhancing cell loss of medial SMC.  相似文献   

12.
We investigated whether mesenchymal stem cell (MSC)-based treatment could inhibit neointimal hyperplasia in a rat model of carotid arterial injury and explored potential mechanisms underlying the positive effects of MSC therapy on vascular remodeling/repair. Sprague-Dawley rats underwent balloon injury to their right carotid arteries. After 2 days, we administered cultured MSCs from bone marrow of GFP-transgenic rats (0.8 × 106 cells, n = 10) or vehicle (controls, n = 10) to adventitial sites of the injured arteries. As an additional control, some rats received a higher dose of MSCs by systemic infusion (3 × 106 cells, tail vein; n = 4). Local vascular MSC administration significantly prevented neointimal hyperplasia (intima/media ratio) and reduced the percentage of Ki67 + proliferating cells in arterial walls by 14 days after treatment, despite little evidence of long-term MSC engraftment. Notably, systemic MSC infusion did not alter neointimal formation. By immunohistochemistry, compared with neointimal cells of controls, cells in MSC-treated arteries expressed reduced levels of embryonic myosin heavy chain and RM-4, an inflammatory cell marker. In the presence of platelet-derived growth factor (PDGF-BB), conditioned medium from MSCs increased p27 protein levels and significantly attenuated VSMC proliferation in culture. Furthermore, MSC-conditioned medium suppressed the expression of inflammatory cytokines and RM-4 in PDGF-BB-treated VSMCs. Thus, perivascular administration of MSCs may improve restenosis after vascular injury through paracrine effects that modulate VSMC inflammatory phenotype.  相似文献   

13.
Recent studies highlight the existence of an autonomous nuclear polyphosphoinositide metabolism related to cellular proliferation and differentiation. However, only few data document the nuclear production of the putative second messengers, the 3-phosphorylated phosphoinositides, by the phosphoinositide 3-kinase (PI3K). In the present paper, we examine whether GTP-binding proteins can directly modulate 3-phosphorylated phosphoinositide metabolism in membrane-free nuclei isolated from pig aorta smooth muscle cells (VSMCs). In vitro PI3K assays performed without the addition of any exogenous substrates revealed that guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) specifically stimulated the nuclear synthesis of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), whereas guanosine 5'-(beta-thio)diphosphate was ineffective. PI3K inhibitors wortmannin and LY294002 prevented GTPgammaS-induced PtdIns(3,4,5)P(3) synthesis. Moreover, pertussis toxin inhibited partially PtdIns(3,4,5)P(3) accumulation, suggesting that nuclear G(i)/G(0) proteins are involved in the activation of PI3K. Immunoblot experiments showed the presence of Galpha(0) proteins in VSMC nuclei. In contrast with previous reports, immunoblots and indirect immunofluorescence failed to detect the p85alpha subunit of the heterodimeric PI3K within VSMC nuclei. By contrast, we have detected the presence of a 117-kDa protein immunologically related to the PI3Kgamma. These results indicate the existence of a G protein-activated PI3K inside VSMC nucleus that might be involved in the control of VSMC proliferation and in the pathogenesis of vascular proliferative disorders.  相似文献   

14.
Thrombospondin-1 (TSP-1), an acute phase reactant implicated in vascular disease, is a matricellular glycoprotein with six domains that confer different functions. The authors have shown TSP-1 induces vascular smooth muscle cell (VSMC) chemotaxis via extracellular signal-regulated kinases-1 and -2 (ERK) and p38 kinase (p38) and that a fusion protein of the carboxyl terminal (COOH) and type 3 repeat (T3) domains independently induce VSMC chemotaxis. The purpose of this study was to determine whether COOH-, T3-induced VSMC chemotaxis, or both, is dependent upon ERK or p38 activation. To determine if the T3, COOH, or type 2 repeat domain (T2, control domain not associated with chemotaxis) activate ERK, p38, or both, VSMCs were exposed to each fusion protein (20 microg/ml for 15, 30, 60, or 120 min), serum-free media (SFM, negative control), or TSP-1 (20 microg/ml for 30 min, positive control). Western immunoblotting was performed for activation studies. Using a microchemotaxis chamber, VSMCs pre-incubated in SFM, DMSO (vehicle control), PD98059 (10 microM), or SB202190 (10 microM) were exposed to each domain, TSP-1, or SFM. After 4 h (37 degrees C), migrated VSMCs were recorded as cells/five fields (400 x) and analyzed by paired t-test. ERK was activated by T2, T3, and COOH. However, p38 was activated by T3 and COOH, but not T2. T3 and COOH-induced VSMC chemotaxis were inhibited by PD98059 or SB202190, but more completely by SB202190. The T2 domain had no effect on VSMC chemotaxis. These results suggest activation of the p38 pathway may be more specific than ERK for COOH- and T3-induced VSMC chemotaxis.  相似文献   

15.
Vascular smooth muscle cell growth-promoting factor (VSGP) was originally isolated from bovine ovarian follicular fluid as a stimulator of vascular smooth muscle cell proliferation. Homology searches indicate that bovine and human VSGPs are orthologs of rat F-spondin. Here, we examined whether recombinant human VSGP/F-spondin affected the biological activities of endothelial cells. VSGP/F-spondin did not affect the proliferation of human umbilical vein endothelial cells (HUVECs); however, it did inhibit VEGF- or bFGF-stimulated HUVEC migration. To clarify the mechanism of this inhibitory effect, we examined the adhesion of HUVECs to extracellular matrix proteins. VSGP/F-spondin specifically inhibited the spreading of HUVECs on vitronectin via the functional blockade of integrin alphavbeta3. As a result, VSGP/F-spondin inhibited the tyrosine phosphorylation of focal adhesion kinase (FAK) when HUVECs were plated on vitronectin. Moreover, VSGP/F-spondin inhibited the activation of Akt when HUVECs on vitronectin were stimulated with VEGF. VSGP/F-spondin inhibited tube formation by HUVECs in vitro and neovascularization in the rat cornea in vivo. These results indicate that VSGP/F-spondin inhibits angiogenesis at least in part by the blockade of endothelial integrin alphavbeta3.  相似文献   

16.
17.
目的:本研究运用差异显示技术研究动脉血管平滑肌细胞在钙化过程中基因表达的改变,探讨与动脉钙化相关的基因.方法:体外培养牛主动脉平滑肌细胞,在培养环境中加入10 mmol/L的β-磷酸甘油酯,诱导细胞钙化,作为动脉钙化模型,分别提取对照细胞和钙化细胞的总RNA,用荧光标记的引物进行DD-PCR扩增,电泳显示差异表达的cDNA,再用反向Northern blot对这些差异cDNA进行鉴定确认,并对确认的差异cDNA片段进行克隆测序.结果:DD-PCR显示65个表达差异的片段,经过回收、扩增和反向Northern blot有7个片断确定有持续的差异表达.经过测序和同源性比较,发现有3个片段为新的基因片段.结论:初步确定7个与血管钙化相关的cDNA片段,其中3个片段为新的未知基因片段.  相似文献   

18.
19.
Li Y  Lu W  Bu G 《FEBS letters》2003,555(2):346-350
The low density lipoprotein receptor-related protein (LRP) is a multifunctional cell surface receptor highly expressed in human aortic smooth muscle cells. In the present study, we used the short interfering RNA (siRNA) technique to explore the role of LRP in smooth muscle cell migration. We identified an LRP-specific siRNA that selective silences LRP expression in human aortic smooth muscle cells. As a consequence, LRP-mediated ligand degradation was significantly reduced. More important, we found that platelet-derived growth factor-dependent cell migration was inhibited in cells transfected with LRP siRNA. These results demonstrate an important role of LRP in smooth muscle cell migration.  相似文献   

20.
Chronic hypoxia triggers pulmonary vascular remodeling, which is associated with a modulation of the vascular smooth muscle cell (SMC) phenotype from a contractile, differentiated to a synthetic, dedifferentiated state. We previously reported that acute hypoxia represses cGMP-dependent protein kinase (PKG) expression in ovine fetal pulmonary venous SMCs (FPVSMCs). Therefore, we tested if altered expression of PKG could explain SMC phenotype modulation after exposure to hypoxia. Hypoxia-induced reduction in PKG protein expression strongly correlated with the repressed expression of SMC phenotype markers, myosin heavy chain (MHC), calponin, vimentin, alpha-smooth muscle actin (alphaSMA), and thrombospondin (TSP), indicating that hypoxic exposure of SMC induced phenotype modulation to dedifferentiated state, and PKG may be involved in SMC phenotype modulation. PKG-specific small interfering RNA (siRNA) transfection in FPVSMCs significantly attenuated calponin, vimentin, and MHC expression, with no effect on alphaSMA and TSP. Treatment with 30 microM Drosophila Antennapedia (DT-3), a membrane-permeable peptide inhibitor of PKG, attenuated the expression of TSP, MHC, alphaSMA, vimentin, and calponin. The results from PKG siRNA and DT-3 studies indicate that hypoxia-induced reduction in protein expression was also similarly impacted by PKG inhibition. Overexpression of PKG in FPVSMCs by transfection with a full-length PKG construct tagged with green fluorescent fusion protein (PKG-GFP) reversed the effect of hypoxia on the expression of SMC phenotype marker proteins. These results suggest that PKG could be one of the determinants for the expression of SMC phenotype marker proteins and may be involved in the maintenance of the differentiated phenotype in pulmonary vascular SMCs in hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号