共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the functional differentiation between the outer and inner dynein arms in eukaryotic flagella, their mechanochemical properties were assessed by measuring the sliding velocities of outer-doublet microtubules in disintegrating axonemes of Chlamydomonas, using wild-type and mutant strains that lack either of the arms. A special procedure was developed to induce sliding disintegration in Chlamydomonas axonemes which is difficult to achieve by ordinary methods. The flagella were first fragmented by sonication, demembranated by Nonidet P-40, and then perfused under a microscope with Mg-ATP and nagarse, a bacterial protease with broad substrate specificity. The sliding velocity varied with the Mg-ATP concentration in a Michaelis-Menten manner in the axonemes from the wild type and a motile mutant lacking the outer dynein arm (oda38). The maximal sliding velocity and apparent Michaelis constant for Mg-ATP were measured to be 13.2 +/- 1.0 micron/s and 158 +/- 36 microM for the wild type and 2.0 +/- 0.1 micron/s and 64 +/- 18 microM for oda38. These maximal sliding velocities were significantly smaller than those estimated in beating axonemes; the reason is not clear. The velocities in the presence or absence of 10(-5) M Ca2+ did not differ noticeably. The axonemes of nonmotile mutants lacking either outer arms (pf13A, pf22) or inner arms (pf23) were examined for their ability to undergo sliding disintegration in the presence of 0.1 mM Mg-ATP. Whereas pf13A axonemes underwent normal sliding disintegration, the other two species displayed it only very poorly. The poor ability of pf23 axonemes to undergo sliding disintegration raises the possibility that the outer dynein arm cannot function well in the absence of the inner arm. 相似文献
2.
Strikingly low ATPase activities in flagellar axonemes of a Chlamydomonas mutant missing outer dynein arms 总被引:2,自引:0,他引:2
The ATPase activities in Chlamydomonas axonemes were compared between wild type and a mutant (oda) that lacks entire outer dynein arms, at various ionic strengths and pH values, and in the presence of different concentrations of high-molecular-mass dextran. Over a 0-0.2 M KCl concentration range, the ATPase activity of oda axonemes was found to be 5-12 times lower than that of the wild-type axonemes. The low activity in oda is surprising since outer arm-depleted axonemes of sea urchin sperm have been reported to retain about 50% of the normal activity. In both wild type and oda, the ATPase activity of dynein was higher when contained within the axoneme than when released from it with 0.6 M KCl. The ATPase activation within the wild-type axoneme was inhibited by high ionic strengths or by the presence of dextran. The activation in oda axonemes, on the other hand, was not inhibited by these factors. These significantly different ATPase properties suggest that the inner and outer dynein arms perform somewhat different functions in this organism. 相似文献
3.
A new Chlamydomonas flagellar mutant, pf-28, which swims more slowly than wild-type cells, was selected. Thin-section electron microscopy revealed the complete absence of outer-row dynein arms in this mutant, whereas inner-row arms and other axonemal structures appeared normal. SDS PAGE analysis also indicated that polypeptides previously identified as outer-arm dynein components are completely absent in pf-28. The two ATPases retained by this mutant sediment at 17.7S and 12.7S on sucrose gradients that contain 0.6 M KCl. Overall swimming patterns of pf-28 differ little from wild-type except that forward swimming speed is reduced to 35% of the wild-type value, and cells show little or no backward movement during photophobic avoidance. Mutant cells will respond to phototactic stimuli, and their flagella will beat in either the forward or reverse mode. This is the first report of a mutant that lacks dynein arms that can swim. 相似文献
4.
Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms 下载免费PDF全文
We have analyzed extragenic suppressors of paralyzed flagella mutations in Chlamydomonas reinhardtii in an effort to identify new dynein mutations. A temperature-sensitive allele of the PF16 locus was mutagenized and then screened for revertants that could swim at the restrictive temperature (Dutcher et al. 1984. J. Cell Biol. 98:229-236). In backcrosses of one of the revertant strains to wild-type, we recovered both the original pf16 mutation and a second, unlinked suppressor mutation with its own flagellar phenotype. This mutation has been identified by both recombination and complementation tests as a new allele of the previously uncharacterized PF9 locus on linkage group XII/XIII. SDS-PAGE analysis of isolated flagellar axonemes and dynein extracts has demonstrated that the pf9 strains are missing four polypeptides that form the I1 inner arm dynein subunit. The primary effect of the loss of the I1 subunit is a decrease in the forward swimming velocity due to a change in the flagellar waveform. Both the flagellar beat frequency and the axonemal ATPase activity are nearly wild-type. Examination of axonemes by thin section electron microscopy and image averaging methods reveals that a specific domain of the inner arm complex is missing in the pf9 mutant strains (see accompanying paper by Mastronarde et al.). When combined with other flagellar defects, the loss of the I1 subunit has synergistic effects on both flagellar assembly and flagellar motility. These synthetic phenotypes provide a screen for new suppressor mutations in other loci. Using this approach, we have identified the first interactive suppressors of a dynein arm mutation and an unusual bypass suppressor mutation. 相似文献
5.
Demembranated axonemes isolated from newt lung ciliated cells show a complex beat frequency response to varying [MgATP] and temperature [Hard and Cypher, 1992, Cell Motil. Cytoskeleton 21:187-198]. The present study was undertaken to ascertain whether the beat frequency of outer-arm-depleted newt lung axonemes is controlled in a manner similar to that of intact axonemes. Populations of demembranated ciliary axonemes were isolated by Triton X-100 extraction of lungs from the newt, Taricha granulosa. Aliquots of the demembranated axonemes were further treated with solutions containing high salt (0.375 M KC1) and 1.25 mM MgATP. This treatment resulted in the selective removal of outer dynein arms and a concomitant decrease in beat frequency to a stable level, 33-35% of control values. The effects of pH, salt concentration, nucleotides, and temperature on the beat frequency of reactivated outer-arm-depleted axonemes were ascertained and compared with those of intact axonemes. Some reactivation properties, such as nucleotide specificity, the effect of pH on beat frequency and the threshold [MgATP] required for reactivation (approximately 5 microM) were similar to those observed for intact axonemes. Other properties, such as the relationship between beat frequency and varying [MgATP] or salt concentration, differed both qualitatively and quantitatively from those of control axonemes, as did their response to temperature over the range, 5 degrees-32 degrees C. The nature of the results obtained with temperature and MgATP suggests that inner and outer dynein arms are not functionally equivalent in situ. 相似文献
6.
Arrangement of inner dynein arms in wild-type and mutant flagella of Chlamydomonas 总被引:2,自引:1,他引:2 下载免费PDF全文
D N Mastronarde E T O'Toole K L McDonald J R McIntosh M E Porter 《The Journal of cell biology》1992,118(5):1145-1162
We have used computer averaging of electron micrographs from longitudinal and cross-sections of wild-type and mutant axonemes to determine the arrangement of the inner dynein arms in Chlamydomonas reinhardtii. Based on biochemical and morphological data, the inner arms have previously been described as consisting of three distinct subspecies, I1, I2, and I3. Our longitudinal averages revealed 10 distinguishable lobes of density per 96-nm repeating unit in the inner row of dynein arms. These lobes occurred predominantly but not exclusively in two parallel rows. We have analyzed mutant strains that are missing I1 and I2 subspecies. Cross-sectional averages of pf9 axonemes, which are missing the I1 subspecies, showed a loss of density in both the inner and outer portions of the inner arm. Averages from longitudinal images showed that three distinct lobes were missing from a single region; two of the lobes were near the outer arms but one was more inward. Serial 24-nm cross-sections of pf9 axonemes showed a complete gap at the proximal end of the repeating unit, confirming that the I1 subunit spans both inner and outer portions of the inner arm region. Examination of pf23 axonemes, which are missing both I1 and I2 subspecies, showed an additional loss almost exclusively in the inner portion of the inner arm. In longitudinal view, this additional loss occurred in three separate locations and consisted of three inwardly placed lobes, one adjacent to each of the two radial spokes and the third at the distal end of the repeating unit. These same lobes were absent ida4 axonemes, which lack only the I2 subspecies. The I2 subspecies thus does not consist of a single dynein arm subunit in the middle of the repeating unit. The radial spoke suppressor mutation, pf2, is missing four polypeptides of previously unknown location. Averages of these axonemes were missing a portion of the structures remaining in pf23 axonemes. This result suggests that polypeptides of the radial spoke control system are close to the inner dynein arms. 相似文献
7.
Khanh Huy Bui Hitoshi Sakakibara Tandis Movassagh Kazuhiro Oiwa Takashi Ishikawa 《The Journal of cell biology》2008,183(5):923-932
The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins. 相似文献
8.
Direction of force generated by the inner row of dynein arms on flagellar microtubules 总被引:1,自引:7,他引:1 下载免费PDF全文
《The Journal of cell biology》1987,105(4):1781-1787
Our goal was to determine the direction of force generation of the inner dynein arms in flagellar axonemes. We developed an efficient means of extracting the outer row of dynein arms in demembranated sperm tail axonemes, leaving the inner row of dynein arms structurally and functionally intact. Sperm tail axonemes depleted of outer arms beat at half the beat frequency of sperm tails with intact arms over a wide range of ATP concentrations. The isolated, outer arm-depleted axonemes were induced to undergo microtubule sliding in the presence of ATP and trypsin. Electron microscopic analysis of the relative direction of microtubule sliding (see Sale, W. S. and P. Satir, 1977, Proc. Natl. Acad. Sci. USA, 74:2045-2049) revealed that the doublet microtubule with the row of inner dynein arms, doublet N, always moved by sliding toward the proximal end of the axoneme relative to doublet N + 1. Therefore, the inner arms generate force such that doublet N pushes doublet N + 1 tipward. This is the same direction of microtubule sliding induced by ATP and trypsin in axonemes having both inner and outer dynein arms. The implications of this result for the mechanism of ciliary bending and utility in functional definition of cytoplasmic dyneins are discussed. 相似文献
9.
The inner dynein arms I2 interact with a "dynein regulatory complex" in Chlamydomonas flagella. 总被引:3,自引:1,他引:3 下载免费PDF全文
We provide indirect evidence that six axonemal proteins here referred to as "dynein regulatory complex" (drc) are located in close proximity with the inner dynein arms I2 and I3. Subsets of drc subunits are missing from five second-site suppressors, pf2, pf3, suppf3, suppf4, and suppf5, that restore flagellar motility but not radial spoke structure of radial spoke mutants. The absence of drc components is correlated with a deficiency of all four heavy chains of inner arms I2 and I3 from axonemes of suppressors pf2, pf3, suppf3, and suppf5. Similarly, inner arm subunits actin, p28, and caltractin/centrin, or subsets of them, are deficient in pf2, pf3, and suppf5. Recombinant strains carrying one of the mutations pf2, pf3, or suppf5 and the inner arm mutation ida4 are more defective for I2 inner arm heavy chains than the parent strains. This evidence indicates that at least one subunit of the drc affects the assembly of and interacts with the inner arms I2. 相似文献
10.
The proximal portion of Chlamydomonas flagella contains a distinct set of inner dynein arms 总被引:5,自引:9,他引:5 下载免费PDF全文
A specific type of inner dynein arm is located primarily or exclusively in the proximal portion of Chlamydomonas flagella. This dynein is absent from flagella less than 6 microns long, is assembled during the second half of flagellar regeneration time and is resistant to extraction under conditions causing complete solubilization of two inner arm heavy chains and partial solubilization of three other heavy chains. This and other evidence described in this report suggest that the inner arm row is composed of five distinct types of dynein arms. Therefore, the units of three inner arms that repeat every 96 nm along the axoneme are composed of different dyneins in the proximal and distal portions of flagella. 相似文献
11.
Immunological dissimilarity in protein component (dynein 1) between outer and inner arms within sea urchin sperm axonemes 下载免费PDF全文
The 0.5 M KCl-treatment solubilizes the outer arms from sea urchin sperm axonemes. Approximately 30 percent of A-polypeptide, corresponding to dynein 1 in SDS- polyacrylamide gel, was solubilized by this treatment (as SEA-dynein 1). Electron microscopic observation indicated that the extracted axonemes lacked the outer arms in various degrees. The DEA-dynein 1 was that the extracted axonemes lacked the outer arms in various degrees. The SEA-dyenin 1 was purified and an antiserum against it was prepared in rabbits. The specificity of antiserum to dynein 1 was determined by immunoelectrophoresis and ouchterlony’s double-diffusion test. The anti-dynein 1 serum inhibited ATPase activity of purified SEA-dynein 1 by 95 percent. By the indirect peroxidase-conjugated antibody method, the loci of SEA-dynein 1 within the intact, salt- extracted and mechanically disrupted axonemes were determined to be the outer arms: deposition of electron-dense materials which represents their localization was detected at the distal ends of the outer arms, in the case of intact axonemes. The 5-6 cross- bridge was hardly decorated. No decoration was seen in the salt-extracted axonemes lacking all the outer arms. In disrupted axonemes, which consist of single to several peripheral doublets, electron-dense materials were deposited only on the outer arms. Approximately 73 percent of axonemal ATPase activity sensitive to antiserum was solubilized by repeated salt-extractions. One-half of A-polypeptide (SEA-dynein 1 located at the outer arms) was contained in the pooled extracts. The extracted axonemes contained another half of A-polypeptide (SUA-dynein 1 supposed to locate at the inner arms) and retained 31 percent of axonemal ATPase activity that was almost resistant to antiserum. Solubilized SUA-dynein 1 was immunologically the same as SEA-dynein 1. This result indicates that in situ SUA-dynein 1 did not receive anti-dynein 1 antibodies, coinciding with the result obtained for salt-extracted axonemes lacking all the outer arms by the enzyme-antibody method mentioned above. These observations suggest that immunological dissimilarity in dynein 1 between outer and inner arms but do not tell us that the inner arms do not contain dynein 1. 相似文献
12.
Effects of antibodies against dynein and tubulin on the stiffness of flagellar axonemes 总被引:1,自引:0,他引:1 下载免费PDF全文
《The Journal of cell biology》1981,91(3):689-694
Antidynein antibodies, previously shown to inhibit flagellar oscillation and active sliding of axonemal microtubules, increase the bending resistance of axonemes measured under relaxing conditions, but not the bending resistance of axonemes measured under rigor conditions. These observations suggest that antidynein antibodies can stabilize rigor cross-bridges between outer-doublet microtubules, by interfering with ATP-induced cross-bridge detachment. Stabilization of a small number of cross-bridge appears to be sufficient to cause substantial inhibition of the frequency of flagellar oscillation. Antitubulin antibodies, previously shown to inhibit flagellar oscillation without inhibiting active sliding of axonemal microtubules, do not increase the static bending resistance of axonemes. However, we observed a viscoelastic effect, corresponding to a large increase in the immediate bending resistance. This immediate bending resistance increase may be sufficient to explain inhibition of flagellar oscillation; but several alternative explanations cannot yet be excluded. 相似文献
13.
When 21S dynein ATPase [EC 3.6.1.3] from sea urchin sperm flagellar axonemes was mixed with the salt-extracted axonemes, the ATPase activity was much higher than the sum of ATPase activities in the two fractions, as reported previously (Gibbons, I.R. & Fronk, E. (1979) J. Biol. Chem. 254, 187-196). This high ATPase level was for the first time demonstrated to be due to the activation of the 21S dynein ATPase activity by the axonemes. The mode of the activation was studied to get an insight into the mechanism of dynein-microtubule interaction. The salt-extracted axonemes caused a 7- to 8-fold activation of the 21S dynein ATPase activity at an axoneme : dynein weight ratio of about 14 : 1. The activation was maximal at a low ionic strength (no KCl) at pH 7.9-8.3. Under these conditions, 21S dynein rebound to the salt-extracted axonemes. The maximal binding ratio of 21S dynein to the axonemes was the same as that observed in the maximal activation of 21S dynein ATPase. The sliding between the outer doublet microtubules in the trypsin-treated 21S dynein-rebound axonemes took place upon the addition of 0.05-0.1 mM ATP in the absence of KCl. During the sliding, the rate of ATP hydrolysis was at the same level as that of the 21S dynein activated by the salt-extracted axonemes. However, it decreased to the level of 21S dynein alone after the sliding. These results suggested that an interaction of the axoneme-rebound 21S dynein with B-subfibers of the adjacent outer doublet microtubules in the axoneme causes the activation of the ATPase activity. 相似文献
14.
《The Journal of cell biology》1994,125(5):1109-1117
To understand mechanisms of regulation of dynein activity along and around the axoneme we further characterized the "dynein regulatory complex" (drc). The lack of some axonemal proteins, which together are referred to as drc, causes the suppression of flagellar paralysis of radial spoke and central pair mutants. The drc is also an adapter involved in the ATP-insensitive binding of I2 and I3 inner dynein arms to doublet microtubules. Evidence supporting these conclusions was obtained through analyses of five drc mutants: pf2, pf3, suppf3, suppf4, and suppf5. Axonemes from drc mutants lack part of I2 and I3 inner dynein arms as well as subsets of seven drc components (apparent molecular weight from 29,000 to 192,000). In the absence of ATP-Mg, dynein-depleted axonemes from the same mutants bind I2 and I3 inner arms at both ATP-sensitive and -insensitive sites. At ATP-insensitive sites, they bind I2 and I3 inner arms to an extent that depends on the drc defect. This evidence suggested to us that the drc forms one binding site for the I2 and I3 inner arms on the A part of doublet microtubules. 相似文献
15.
Outer and inner dynein arms of cilia and flagella 总被引:5,自引:0,他引:5
16.
Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function 总被引:20,自引:0,他引:20
Mutants with outer dynein arm defects or deficiencies all show a major reduction in beat frequency to about half the normal value; some of these mutants show an additional decrease in sliding velocity associated with reduced shear amplitude and an additional reduction in beat frequency, as well as other more minor modifications of the normal forward mode bending pattern. New mutants (ida98, pf30), which appear to be deficient in a subset of inner dynein arms show a reduction in sliding velocity that is primarily associated with a reduction in shear amplitude, with only a small reduction in beat frequency. These differences in motility phenotype between inner and outer dynein arm mutants suggest that inner and outer dynein arms may have distinct functions. The relatively large decrease in sliding velocity associated with partial loss of inner arms is consistent with earlier observations on pf23, a nonmotile mutant lacking inner arms, suggesting that inner arms may have an essential function in motility. The ability to generate reverse mode bending patterns is retained in some inner or outer dynein arm mutants, but appears to be decreased in those mutants which show reduced shear amplitude for the forward mode bending pattern. 相似文献
17.
Functional reconstitution of Chlamydomonas outer dynein arms from alpha- beta and gamma subunits: requirement of a third factor 下载免费PDF全文
《The Journal of cell biology》1994,126(3):737-745
The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S dyneins to the axonemes of the outer armless mutants oda1- oda6. A third factor that sediments at integral 7S is required for efficient reconstitution of the outer arms on the axonemes of oda1 and oda3. However, this factor is not necessary for reconstitution on the axonemes of oda2, oda4, oda5, and oda6. SDS-PAGE analysis indicates that the axonemes of the former two mutants lack a integral of 70-kD polypeptide that is present in those of the other mutants as well as in the 7S fraction from the wild-type extract. Furthermore, electron micrographs of axonemal cross sections revealed that the latter four mutants, but not oda1 or oda3, have small pointed structures on the outer doublets, at a position in cross section where outer arms normally occur. We suggest that the 7S factor constitutes the pointed structure on the outer doublets and facilitates attachment of the outer arm. The discovery of this structure raises a new question as to how the attachment site for the outer arm dynein is determined within the axoneme. 相似文献
18.
Using the quick-freeze deep-etch technique, we describe the structure of outer-arm dynein proteins from Chlamydomonas and Tetrahymena after adsorption to a mica surface, after high-salt dissociation, and after glutaraldehyde fixation, and compare these images to the configuration of outer arms bound to microtubules. After adsorption to mica, the extracted dyneins from both organisms look like three-headed “bouquets”, as reported for Tetrahymena by Johnson & Wall (1983b). High magnification images demonstrate that each head carries a slender “stalk” and a long “stem”, and that small subunits decorate the stems and create a “flowerpot” domain at the base of the bouquet. Exposure to high salt induces this trimer to dissociate into a two-headed species and a single-headed species; it also stimulates the decorative elements to dissociate from the stems. Dynein is thus constructed on the same general plan as myosin, with large globular heads, narrow stems and additional small subunits that associate with the stems. The splayed-out image of the bouquet appears to be a distortion arising during adsorption to mica since, after brief glutaraldehyde fixation, the three heads remain closely associated as vertices of a triangular unit. In situ, the three heads also adopt this trigonal configuration. Two of the three are visible from the exterior of the axoneme and constitute the bilobed rigor head we described previously (Goodenough & Heuser, 1982). The third head faces the interior of the axoneme where, we propose, it forms the “hook” of the outer arm as seen in thin section. We further propose that the decorative elements associated with the stem coalesce to form the two outer-arm “feet” seen in situ, and that at least one of the in vitro stalks is equivalent to the in situ stalk, which extends from the head to the B microtubule. Deep-etch images of stretched axonemes, partially extracted axonemes, and dynein-decorated brain microtubules indicate that each outer arm, as traditionally viewed, is a hybrid of two dynein molecules: its two feet derive from one molecule, whereas its trigonal head derives from the molecule located distally. The resultant overlapping configuration creates the diagonal “linkers” seen in situ, which correspond to the in vitro stems. Thus, a row of dynein arms is essentially a dynein polymer that extends from the tip to the base of a doublet microtubule, each head riding on its neighbor's feet like a row of circus elephants. Such dynein-dynein interactions may account for the co-operativity of dynein-microtubule binding, and may play an important role in generating ciliary motility. 相似文献
19.
Regulation of Chlamydomonas flagellar dynein by an axonemal protein kinase 总被引:3,自引:2,他引:3 下载免费PDF全文
《The Journal of cell biology》1994,127(6):1683-1692
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wild-type level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild- type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke- deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 microM cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP- mediated mechanism. 相似文献
20.
S H Myster J A Knott K M Wysocki E O'Toole M E Porter 《The Journal of cell biology》1999,146(4):801-818
Flagellar motility is generated by the activity of multiple dynein motors, but the specific role of each dynein heavy chain (Dhc) is largely unknown, and the mechanism by which the different Dhcs are targeted to their unique locations is also poorly understood. We report here the complete nucleotide sequence of the Chlamydomonas Dhc1 gene and the corresponding deduced amino acid sequence of the 1alpha Dhc of the I1 inner dynein arm. The 1alpha Dhc is similar to other axonemal Dhcs, but two additional phosphate binding motifs (P-loops) have been identified in the NH(2)- and COOH-terminal regions. Because mutations in Dhc1 result in motility defects and loss of the I1 inner arm, a series of Dhc1 transgenes were used to rescue the mutant phenotypes. Motile cotransformants that express either full-length or truncated 1alpha Dhcs were recovered. The truncated 1alpha Dhc fragments lacked the dynein motor domain, but still assembled with the 1beta Dhc and other I1 subunits into partially functional complexes at the correct axoneme location. Analysis of the transformants has identified the site of the 1alpha motor domain in the I1 structure and further revealed the role of the 1alpha Dhc in flagellar motility and phototactic behavior. 相似文献