首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterologous "prime-boost" regimens that involve priming with plasmid DNA vaccines and boosting with recombinant viral vectors have been shown to elicit potent virus-specific cytotoxic T-lymphocyte responses. Increasing evidence, however, suggests that the utility of recombinant viral vectors in human populations will be significantly limited by preexisting antivector immunity. Here we demonstrate that the coadministration of plasmid chemokines and colony-stimulating factors with plasmid DNA vaccines markedly increases the immunogenicity of DNA prime-recombinant adenovirus serotype 5 (rAd5) boost and DNA prime-recombinant vaccinia virus (rVac) boost vaccine regimens in BALB/c mice. In mice with preexisting anti-Ad5 immunity, priming with the DNA vaccine alone followed by rAd5 boosting elicited only marginal immune responses. In contrast, cytokine-augmented DNA vaccine priming followed by rAd5 vector boosting was able to generate potent immune responses in mice with preexisting anti-Ad5 immunity. These data demonstrate that plasmid cytokines can markedly improve the immunogenicity of DNA prime-viral vector boost vaccine strategies and can partially compensate for antivector immunity.  相似文献   

2.
Infectious intracellular and extracellular forms of vaccinia virus have different outer membrane proteins, presenting multiple targets to the immune system. We investigated the immunogenicity of soluble forms of L1, an outer membrane protein of the intracellular mature virus, and of A33 and B5, outer membrane proteins of the extracellular enveloped virus. The recombinant proteins, in 10-microg amounts mixed with a Ribi- or saponin-type adjuvant, were administered subcutaneously to mice. Antibody titers to each protein rose sharply after the first and second boosts, reaching levels that surpassed those induced by percutaneous immunization with live vaccinia virus. Immunoglobulin G1 (IgG1) antibody predominated after the protein immunizations, indicative of a T-helper cell type 2 response, whereas live vaccinia virus induced mainly IgG2a, indicative of a T-helper cell type 1 response. Mice immunized with any one of the recombinant proteins survived an intranasal challenge with 5 times the 50% lethal dose of the pathogenic WR strain of vaccinia virus. Measurements of weight loss indicated that the A33 immunization most effectively prevented disease. The superiority of protein combinations was demonstrated when the challenge virus dose was increased 20-fold. The best protection was obtained with a vaccine made by combining recombinant proteins of the outer membranes of intracellular and extracellular virus. Indeed, mice immunized with A33 plus B5 plus L1 or with A33 plus L1 were better protected than mice immunized with live vaccinia virus. Three immunizations with the three-protein combination were necessary and sufficient for complete protection. These studies suggest the feasibility of a multiprotein smallpox vaccine.  相似文献   

3.
Ag85A and ESAT-6 proteins of Mycobacterium tuberculosis (M.TB) are important protective antigens. The 32-kDa Ag85A is a strong immunogen in both small and large animals. However, the 6-kDa ESAT-6 has relatively low inherent immunogenicity, especially in large animals. To improve the immunogenicity of ESAT-6 in animals, we made chimeric DNA vaccines, HG856K and HG856A, by inserting the esat-6 gene into the Kpn I or Acc I endonuclease restriction site of the ag85a gene, respectively. BALB/c mice were injected intramuscularly three times with the 10-microg singular DNA vaccine (HG85 encoding for Ag85A or HG6 encoding for ESAT-6) or chimeric DNA vaccine (HG856K or HG856A) followed by electroporation (EP). Ten days after the last DNA vaccination, mice received a booster immunization intraperitoneally with 50-microg pure recombinant protein Ag85A or ESAT-6 without adjuvant. Additional groups of mice immunized with chimeric DNA vaccines were boosted with two mixed proteins (Ag85A/ESAT-6) at the same time. The results showed that the immunogenicity of M.TB ESAT-6 antigen was not improved by priming with the HG6 DNA vaccine. However, the humoral immunity against the ESAT-6 antigen was significantly increased in the mice primed with chimeric DNA vaccines, HG856K or HG856A, followed by boosting with ESAT-6 or ESAT-6/Ag85A mixed proteins.  相似文献   

4.
In some parts of Africa, 50% of deaths attributed to malaria occur in infants less than 8 mo. Thus, immunization against malaria may have to begin in the neonatal period, when neonates have maternally acquired Abs against malaria parasite proteins. Many malaria vaccines in development rely upon CD8 cells as immune effectors. Some studies indicate that neonates do not mount optimal CD8 cell responses. We report that BALB/c mice first immunized as neonates (7 days) with a Plasmodium yoelii circumsporozoite protein (PyCSP) DNA vaccine mixed with a plasmid expressing murine GM-CSF (DG) and boosted at 28 days with poxvirus expressing PyCSP were protected (93%) as well as mice immunized entirely as adults (70%). Protection was dependent on CD8 cells, and mice had excellent anti-PyCSP IFN-gamma and cytotoxic T lymphocyte responses. Mice born of mothers previously exposed to P. yoelii parasites or immunized with the vaccine were protected and had excellent T cell responses. These data support assessment of this immunization strategy in neonates/young infants in areas in which malaria exacts its greatest toll.  相似文献   

5.
In an effort to develop an AIDS vaccine that elicits high-frequency cytotoxic-T-lymphocyte (CTL) responses with specificity for a diversity of viral epitopes, we explored two prototype multiepitope plasmid DNA vaccines in the simian-human immunodeficiency virus/rhesus monkey model to determine their efficiency in priming for such immune responses. While a simple multiepitope vaccine construct demonstrated limited immunogenicity in monkeys, this same multiepitope genetic sequence inserted into an immunogenic simian immunodeficiency virus gag DNA vaccine elicited high-frequency CTL responses specific for all of the epitopes included in the vaccine. Both multiepitope vaccine prototypes primed for robust epitope-specific CTL responses that developed following boosting with recombinant modified vaccinia virus Ankara vaccines expressing complete viral proteins. The natural hierarchy of immunodominance for these epitopes was clearly evident in the boosted monkeys. These studies suggest that multiepitope plasmid DNA vaccine-based prime-boost regimens can efficiently prime for CTL responses of increased breadth and magnitude, although they do not overcome predicted hierarchies of immunodominance.  相似文献   

6.
Plasmid vectors containing Japanese encephalitis virus (JEV) premembrane (prM) and envelope (E) genes were constructed that expressed prM and E proteins under the control of a cytomegalovirus immediate-early gene promoter. COS-1 cells transformed with this plasmid vector (JE-4B clone) secreted JEV-specific extracellular particles (EPs) into the culture media. Groups of outbred ICR mice were given one or two doses of recombinant plasmid DNA or two doses of the commercial vaccine JEVAX. All mice that received one or two doses of DNA vaccine maintained JEV-specific antibodies 18 months after initial immunization. JEVAX induced 100% seroconversion in 3-week-old mice; however, none of the 3-day-old mice had enzyme-linked immunosorbent assay titers higher than 1:400. Female mice immunized with this DNA vaccine developed plaque reduction neutralization antibody titers of between 1:20 and 1:160 and provided 45 to 100% passive protection to their progeny following intraperitoneal challenge with 5,000 PFU of virulent JEV strain SA14. Seven-week-old adult mice that had received a single dose of JEV DNA vaccine when 3 days of age were completely protected from a 50, 000-PFU JEV intraperitoneal challenge. These results demonstrate that a recombinant plasmid DNA which produced JEV EPs in vitro is an effective vaccine.  相似文献   

7.
The most promising vaccine strategies for the induction of cytotoxic-T-lymphocyte responses have been heterologous prime/boost regimens employing a plasmid DNA prime and a live recombinant-vector boost. The priming immunogen in these regimens must elicit antigen-specific memory CD8+ T lymphocytes that will expand following the boosting immunization. Because plasmid DNA immunogens are expensive and their immunogenicity has proven disappointing in human clinical trials, we have been exploring novel priming immunogens that might be used in heterologous immunization regimens. Here we show that priming with a prototype recombinant Mycobacterium smegmatis strain expressing human immunodeficiency virus type 1 (HIV-1) gp120-elicited CD4+ T lymphocytes with a functional profile of helper cells as well as a CD8+ T-lymphocyte population. These CD8+ T lymphocytes rapidly differentiated to memory cells, defined on the basis of their cytokine profile and expression of CD62L and CD27. Moreover, these recombinant-mycobacterium-induced T lymphocytes rapidly expanded following boosting with a recombinant adenovirus expressing HIV-1 Env to gp120-specific CD8+ T lymphocytes. This work demonstrates a remarkable skewing of recombinant-mycobacterium-induced T lymphocytes to durable antigen-specific memory CD8+ T cells and suggests that such immunogens might be used as priming vectors in prime/boost vaccination regimens for the induction of cellular immune responses.  相似文献   

8.
构建表达狂犬病病毒SRV9株糖蛋白(GP)的重组杆状病毒,评价其表达出的SRV9株糖蛋白对小鼠免疫效果。将狂犬病病毒SRV9株GP基因的完整开放阅读框克隆入穿梭质粒Bacmid中,构建重组穿梭质粒Bacmid-G,以此转染Sf9细胞。对病变细胞培养物进行电镜观察,获得正确重组杆状病毒后,通过Western-blot、IFA及小鼠免疫实验鉴定表达产物的免疫反应性及免疫原性。正确构建重组穿梭质粒Bacmid-G;获得表达SRV9株糖蛋白的重组杆状病毒,其表达产物具有良好免疫原性;表达产物接种小鼠可诱导其产生抗狂犬病病毒中和抗体,中和抗体达到保护水平的比例为100%。本实验所获得的重组杆状病毒表达出的SRV9株糖蛋白具有较好的免疫原性,可诱导小鼠产生保护性中和抗体,该实验为进一步开发狂犬病亚单位疫苗奠定了基础。  相似文献   

9.
The prevalence of preexisting immunity to adenoviruses in the majority of the human population might adversely impact the development of adaptive immune responses against adenovirus vector-based vaccines. To address this issue, we primed BALB/c mice either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of wild type (WT) human adenovirus subtype 5 (HAd5). Following the development of immunity against HAd5, we immunized animals via the i.n. or i.m. route of inoculation with a HAd vector (HAd-HA-NP) expressing the hemagglutinin (HA) and nucleoprotein (NP) of A/Vietnam/1203/04 (H5N1) influenza virus. The immunogenicity and protection results suggest that low levels of vector immunity (<520 virus-neutralization titer) induced by priming mice with up to 10(7) plaque forming units (p.f.u.) of HAd-WT did not adversely impact the protective efficacy of the vaccine. Furthermore, high levels of vector immunity (approximately 1500 virus-neutralization titer) induced by priming mice with 10(8) p.f.u. of HAd-WT were overcome by either increasing the vaccine dose or using alternate routes of vaccination. A further increase in the priming dose to 10(9) p.f.u. allowed only partial protection. These results suggest possible strategies to overcome the variable levels of human immunity against adenoviruses, leading to better utilization of HAd vector-based vaccines.  相似文献   

10.
The induction of human immunodeficiency virus (HIV)-specific T-cell responses is widely seen as critical to the development of effective immunity to HIV type 1 (HIV-1). Plasmid DNA and recombinant fowlpox virus (rFPV) vaccines are among the most promising safe HIV-1 vaccine candidates. However, the immunity induced by either vaccine alone may be insufficient to provide durable protection against HIV-1 infection. We evaluated a consecutive immunization strategy involving priming with DNA and boosting with rFPV vaccines encoding common HIV-1 antigens. In mice, this approach induced greater HIV-1-specific immunity than either vector alone and protected mice from challenge with a recombinant vaccinia virus expressing HIV-1 antigens. In macaques, a dramatic boosting effect on DNA vaccine-primed HIV-1-specific helper and cytotoxic T-lymphocyte responses, but a decline in HIV-1 antibody titers, was observed following rFPV immunization. The vaccine regimen protected macaques from an intravenous HIV-1 challenge, with the resistance most likely mediated by T-cell responses. These studies suggest a safe strategy for the enhanced generation of T-cell-mediated protective immunity to HIV-1.  相似文献   

11.
The protozoan parasite Toxoplasma gondii elicits strong cell-mediated immunity against itself as well as nonspecific resistance against other pathogens and tumors. For this reason, we asked whether recombinant Toxoplasma could be utilized as an effective vaccine vehicle for inducing immunity against heterologous microbial infections. The circumsporozoite protein (PyCSP) of Plasmodium yoelii was engineered into a T. gondii temperature-sensitive strain (ts-4), a mutant that induces complete protection against virulent Toxoplasma challenge. When administered to mice in a single dose, a recombinant ts-4 (CSC3) that both secretes and expresses surface PyCSP induced strong anti-CSP Ab responses, with an isotype distribution pattern similar to that stimulated by the T. gondii carrier. When challenged with P. yoelii sporozoites during the first month after CSC3 vaccination, these animals displayed substantial levels of nonspecific resistance attributable entirely to the T. gondii carrier. Nevertheless, after the nonspecific protection had waned, high levels (up to 79%) of specific immunity against sporozoite challenge were achieved by boosting the animals with recombinant vaccinia virus expressing PyCSP. These CSC3-primed PyCSP-vaccinia-boosted mice displayed high frequencies of splenic PyCSP-specific IFN-gamma-producing cells, as well as CD8+ T cell-dependent cytolytic activity. In vivo depletion of CD8+ lymphocytes at the time of challenge completely ablated protective immunity in the T. gondii-primed/vaccinia-boosted animals, while neutralization of IFN-gamma or IL-12 caused a partial but significant reduction in resistance. Together these findings establish the efficacy of recombinant attenuated Toxoplasma as a vaccine vehicle for priming CD8+-dependent cell-mediated immunity.  相似文献   

12.
Transmission of human immunodeficiency virus type 1 (HIV-1) occurs primarily via the mucosal route, suggesting that HIV-1 vaccines may need to elicit mucosal immune responses. Here, we investigated the immunogenicity and relative efficacy of systemic immunization with two human ALVAC-HIV-1 recombinant vaccines expressing Gag, Pol, and gp120 (vCP250) or Gag, Pol, and gp160 (vCP1420) in a prime-boost protocol with their homologous vaccine native Env proteins. The relative efficacy was measured against a high-dose mucosal exposure to the pathogenic neutralization-resistant variant SHIV(KU2) (simian-human immunodeficiency virus). Systemic immunization with both vaccine regimens decreased viral load levels not only in blood but unexpectedly also in mucosal sites and protected macaques from peripheral CD4+ T-cell loss. This protective effect was stronger when the gp120 antigen was included in the vaccine. Inclusion of recombinant Tat protein in the boosting phase along with the Env protein did not contribute further to the preservation of CD4+ T cells. Thus, systemic immunization with ALVAC-HIV-1 vaccine candidates elicits anti-HIV-1 immune responses able to contain virus replication also at mucosal sites in macaques.  相似文献   

13.
目的:构建HIV-1重组腺病毒疫苗并初步鉴定其免疫原性。方法:用Adeno-XExpressionSystem试剂盒将HIV—lgagpol基因片段插入到腺病毒载体上,通过脂质体介导将获得的重组腺病毒质粒Adeno—X-gagpol转染至293细胞,使之自主包装成有感染活性的重组腺病毒tad—gagpol,用western-blotting法鉴定其表达情况;用CsCl密度梯度离心法纯化该重组腺病毒,以5×10^8 pfu/mL的滴度lmL单次免疫小鼠,15天后测小鼠体液免疫效果。结果:克隆序列与设计相符,重组腺病毒疫苗能稳定表达gag—pol蛋白,体液免疫中检测出抗p55和p24的特异性抗体。结论:HIV—lgagpol重组腺病毒构建成功,具有一定的体液免疫原性。  相似文献   

14.
Trivalent influenza virus A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong vaccine preparations were used in a randomized, controlled, dose-ranging phase I study. The vaccines were prepared from highly purified hemagglutinin and neuraminidase from influenza viruses propagated in embryonated chicken eggs and inactivated with formaldehyde. We assigned 100 participants to six vaccine groups, as follows. Three intranasally vaccinated groups received 7.5-microg doses of hemagglutinin from each virus strain with either 3, 10, or 30 microg of heat-labile Escherichia coli enterotoxin (LTK63) and 990 microg of a supramolecular biovector; one intranasally vaccinated group was given 7.5-microg doses of hemagglutinin with 30 microg of LTK63 without the biovector; and another intranasally vaccinated group received saline solution as a placebo. The final group received an intramuscular vaccine containing 15 microg hemagglutinin from each strain with MF59 adjuvant. The immunogenicity of two intranasal doses, delivered by syringe as drops into both nostrils with an interval of 1 week between, was compared with that of two inoculations by intramuscular delivery 3 weeks apart. The intramuscular and intranasal vaccine formulations were both immunogenic but stimulated different limbs of the immune system. The largest increase in circulating antibodies occurred in response to intramuscular vaccination; the largest mucosal immunoglobulin A (IgA) response occurred in response to mucosal vaccination. Current licensing criteria for influenza vaccines in the European Union were satisfied by serum hemagglutination inhibition responses to A/Panama and B/Guandong hemagglutinins given with MF59 adjuvant by injection and to B/Guandong hemagglutinin given intranasally with the highest dose of LTK63 and the biovector. Geometric mean serum antibody titers by hemagglutination inhibition and microneutralization were significantly higher for each virus strain at 3 and 6 weeks in recipients of the intramuscular vaccine than in recipients of the intranasal vaccine. The immunogenicity of the intranasally delivered experimental vaccine varied by influenza virus strain. Mucosal IgA responses to A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong were highest in participants given 30 microg LTK63 with the biovector, occurring in 7/15 (47%; P=0.0103), 8/15 (53%; P=0.0362), and 14/15 (93%; P=0.0033) participants, respectively, compared to the placebo group. The addition of the biovector to the vaccine given with 30 microg LTK63 enhanced mucosal IgA responses to A/Duck/Singapore (H5N3) (P=0.0491) and B/Guandong (P=0.0028) but not to A/Panama (H3N2). All vaccines were well tolerated.  相似文献   

15.
Here we report for the first time on the immunogenicity and protective efficacy of a vaccine strategy involving the adjuvanted fusion protein “H28” (consisting of Ag85B-TB10.4-Rv2660c) and Modified Vaccinia Virus Ankara expressing H28. We show that a heterologous prime-boost regimen involving priming with H28 in a Th1 adjuvant followed by boosting with H28 expressed by MVA (H28/MVA28) induced the highest percentage of IFN-γ expressing T cells, the highest production of IFN-γ per single cell and the highest induction of CD8 T cells compared to either of the vaccines given alone. In contrast, in mice vaccinated with adjuvanted recombinant H28 alone (H28/H28) we observed the highest production of IL-2 per single cell and the highest frequency of antigen specific TNF-α/IL-2 expressing CD4 T cells pre and post infection. Interestingly, TNF-α/IL-2 expressing central memory-like CD4 T cells showed a significant positive correlation with protection at week 6 post infection, whereas the opposite was observed for post infection CD4 T cells producing only IFN-γ. Moreover, as a BCG booster vaccine in a clinically relevant non-human primate TB model, the H28/H28 vaccine strategy induced a slightly more prominent reduction of clinical disease and pathology for up to one year post infection compared to H28/MVA28. Taken together, our data showed that the adjuvanted subunit and MVA strategies led to different T cell subset combinations pre and post infection and that TNF-α/IL-2 double producing but not IFN-γ single producing CD4 T cell subsets correlated with protection in the mouse TB model. Moreover, our data demonstrated that the H28 vaccine antigen was able to induce strong protection in both a mouse and a non-human primate TB model.  相似文献   

16.
We investigated long-term memory and recall cellular immune responses to human immunodeficiency virus type 1 (HIV-1) Env and Gag proteins elicited by recombinant vesicular stomatitis viruses (VSVs) expressing Env and Gag. More than 7 months after a single vaccination with VSV-Env, approximately 6% of CD8(+) splenocytes stained with major histocompatibility complex class I tetramers containing the Env p18-I10 immunodominant peptide and showed a memory phenotype (CD44(Hi)). The level of tetramer-positive cells in memory was about 14% of the peak primary response. Recall responses elicited in these mice 5 days after boosting with a heterologous recombinant vaccinia virus expressing HIV-1 Env showed that 40 to 45% of CD8(+) splenocytes were tetramer positive and activated (CD62L(Lo)), and these cells produced gamma interferon after stimulation with Env peptide, indicating that they were functional. Five months after the boost, the long-term memory cell population (tetramer positive, CD44(Hi)) constituted 30% of the CD8(+) splenocytes. Recall responses to HIV-1 Gag were examined in mice primed with VSV recombinants expressing HIV-1 Gag protein and boosted with a vaccinia virus recombinant expressing Gag. Using this protocol, we found that approximately 40% of CD8(+) splenocytes were activated (CD62L(Lo)) and specific for a Gag immunodominant peptide (tetramer positive). The high-level Gag recall response elicited by the vaccinia virus-Gag was greater than that obtained by boosting with a VSV-Gag vector with a different VSV glycoprotein. The corresponding levels of CD44(Hi) memory cells were also higher long after boosting with vaccinia virus-Gag than after boosting with a glycoprotein exchange VSV-Gag. Our results show that VSV vectors elicit high-level memory CTL responses and that these can be amplified as much as six- to sevenfold using a heterologous boosting vector.  相似文献   

17.
Immunization with recombinant proteins may provide a safer alternative to live vaccinia virus for prophylaxis of poxvirus infections. Although antibody protects against vaccinia virus infection, the mechanism is not understood and the selection of immunogens is daunting as there are dozens of surface proteins and two infectious forms known as the mature virion (MV) and the enveloped virion (EV). Our previous studies showed that mice immunized with soluble forms of EV membrane proteins A33 and B5 and MV membrane protein L1 or passively immunized with antibodies to these proteins survived an intranasal challenge with vaccinia virus. The present study compared MV protein A27, which has a role in virus attachment to glycosaminoglycans on the cell surface, to L1 with respect to immunogenicity and protection. Although mice developed similar levels of neutralizing antibody after immunizations with A27 or L1, A27-immunized mice exhibited more severe disease upon an intranasal challenge with vaccinia virus. In addition, mice immunized with A27 and A33 were not as well protected as mice receiving L1 and A33. Polyclonal rabbit anti-A27 and anti-L1 IgG had equivalent MV-neutralizing activities when measured by the prevention of infection of human or mouse cells or cells deficient in glycosaminoglycans or by adding antibody prior to or after virus adsorption. Nevertheless, the passive administration of antibody to A27 was poorly protective compared to the antibody to L1. These studies raise questions regarding the basis for antibody protection against poxvirus disease and highlight the importance of animal models for the early evaluation of vaccine candidates.  相似文献   

18.
戊型肝炎病毒衣壳蛋白内包含一个强H-2d限制性Th表位P34。以该表位肽免疫BALB/c鼠,其脾细胞能够在体外识别重组戊型肝炎病毒衣壳蛋白,剔除实验表明应答细胞几乎完全是CD4 T细胞,证明P34表位肽能有效诱导产生特异性Th细胞。以P34肽初免小鼠,再以包含该表位的重组戊型肝炎病毒抗原(E2)免疫,结果表明,10μg、20μgE2免疫组在免疫后第1周即有部分小鼠产生抗体,到第3周所有小鼠均能够产生抗体;而对照肽P18初免的小鼠,以20μgE2加强免疫亦无法诱导小鼠产生抗体。这表明,Th表位肽P34初免诱导产生的Th细胞能够有效促进小鼠对携带该表位的载体蛋白的体液免疫应答。  相似文献   

19.
A central goal in vaccinology is the induction of high and sustained Ab responses. Protein-in-adjuvant formulations are commonly used to achieve such responses. However, their clinical development can be limited by the reactogenicity of some of the most potent preclinical adjuvants and the cost and complexity of licensing new adjuvants for human use. Also, few adjuvants induce strong cellular immunity, which is important for protection against many diseases, such as malaria. We compared classical adjuvants such as aluminum hydroxide to new preclinical adjuvants and adjuvants in clinical development, such as Abisco 100, CoVaccine HT, Montanide ISA720, and stable emulsion-glucopyranosyl lipid A, for their ability to induce high and sustained Ab responses and T cell responses. These adjuvants induced a broad range of Ab responses when used in a three-shot protein-in-adjuvant regimen using the model Ag OVA and leading blood-stage malaria vaccine candidate Ags. Surprisingly, this range of Ab immunogenicity was greatly reduced when a protein-in-adjuvant vaccine was used to boost Ab responses primed by a human adenovirus serotype 5 vaccine recombinant for the same Ag. This human adenovirus serotype 5-protein regimen also induced a more cytophilic Ab response and demonstrated improved efficacy of merozoite surface protein-1 protein vaccines against a Plasmodium yoelii blood-stage challenge. This indicates that the differential immunogenicity of protein vaccine adjuvants may be largely overcome by prior immunization with recombinant adenovirus, especially for adjuvants that are traditionally considered poorly immunogenic in the context of subunit vaccination and may circumvent the need for more potent chemical adjuvants.  相似文献   

20.
Balb/c mice were immunized with the recombinant fusion protein gD1/313 (FpgD1/313 representing the ectodomain of HSV-1 gD), with the non-pathogenic ANGpath gE-del virus, with the plasmid pcDNA3.1-gD expressing full-length gD1 and with the recombinant immediate early (IE) HSV-1 protein ICP27. Specific antibodies against these antigens (as detected by ELISA) reached high titers with the exception of the DNA vaccine. High-grade protection against challenge with the virulent strain SC16 was found following immunization with the pcDNA3.1-gD plasmid and with the gE-del virus. Medium grade, but satisfactory protection developed after immunization with the FpgD1/313 and minimum grade protection was seen upon immunization with the IE/ICP27 polypeptide. A considerable response of peripheral blood cells (PBL) and splenocytes in the lymphocyte transformation test (LTT) was found in mice immunized with FpgD1/313, with the pcDNA3.1-gD plasmid and with the live ANGpathgE-del virus. For lymphocyte stimulation in vitro, the FpgD1/313 antigen was less effective than the purified gD1/313 polypeptide (cleaved off from the fusion protein); both proteins elicited higher proliferation at the 5 mug per 0.1 mL dose than at the 1 mug per 0.1 mL dose. The secretion of Th type 1 (TNF, IFN-gamma and IL-2) and Th type 2 (IL-4 and IL-6) cytokines was tested in the medium fluid of purified PBL and splenocyte cultures; their absolute values were expressed in relative indexes. The PBL from FpgD1/313 immunized mice showed increased secretion of both T(H)1 (TNF) as well as T(H)2 (IL-4) cytokines (7-10-fold, respectively). Splenocytes from FpgD1/313 immunized mice showed a significant (23-fold) increase in IL-4 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号