首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In trout and salmon, the metabolic costs of exercise and feeding are additive, which would suggest that gastrointestinal blood flow during exercise is maintained to preserve digestive and absorptive processes related to the specific dynamic action (SDA) of food. However, in most published studies, gastrointestinal blood flow drops during swimming, hypoxia, and general stress. To test whether gastrointestinal blood flow is spared during exercise after feeding, sea bass were instrumented with flow probes to measure cardiac output and celiacomesenteric blood flow while swimming in a respirometer before and after feeding. Swimming at 2 body lengths per second (bl s(-1)) increased metabolic rate considerably more than did feeding (208% vs. 32% increase, respectively, relative to resting), and a similar pattern was observed for cardiac output. In unfed fish, resting gastrointestinal blood flow was 13.8+/-0.5 mL min(-1) kg(-1). After feeding, resting gastrointestinal blood flow increased by 82% but then decreased progressively with increasing swimming speeds. At 2 bl s(-1), gastrointestinal blood flow in fed fish was not significantly different compared with that in unfed swimming fish, and, therefore, the data do not support the gastrointestinal sparing hypothesis. The magnitude of the SDA was maintained despite the decrease in gastrointestinal blood flow and the consequent reduction in oxygen supply to the gut. An estimate of maximal oxygen flow to the gastrointestinal tract after feeding yielded 2.6 mmol O(2) h(-1) kg(-1), but this amount is not able to cover the oxygen demand of 3.16 mmol O(2) h(-1) kg(-1). Therefore, the SDA must reflect metabolic processes in tissues other than those directly perfused by the celiacomesenteric artery.  相似文献   

2.
Cardioventilatory variables and blood-gas, acid-base status were measured in cannulated white sturgeon (Acipenser transmontanus) maintained at 19 degrees C during normocapnic and hypercapnic (Pw(CO(2)) approximately 20 Torr) water conditions and after the injection of adrenergic analogs. Hypercapnia produced significant increases in arterial PCO(2), ventilatory frequency, and plasma concentration of cortisol and epinephrine, and it produced significant decreases in arterial pH and plasma concentration of glucose but no change in arterial PO(2), hematocrit, and concentration of lactate or norepinephrine. Hypercapnia significantly increased cardiac output (Q) by 22%, mean arterial pressure (MAP) by 8%, and heart rate (HR) by 8%. However, gut blood flow (GBF) remained constant. In normocapnic fish, phenylephrine significantly constricted the splanchnic circulation, whereas isoproterenol significantly increased Q and produced a systemic vasodilation. During hypercapnia, propranolol significantly decreased Q, GBF, MAP, and HR, whereas phentolamine significantly decreased MAP and increased GBF. These changes suggest that cardiovascular function in the white sturgeon is sensitive to both alpha- and beta-adrenergic modulation. We found microspheres to be unreliable in predicting GBF on the basis of our comparisons with simultaneous direct measurements of GBF. Overall, our results demonstrate that environmental hypercapnia (e.g., as is experienced in high-intensity culture situations) elicits stress responses in white sturgeon that significantly elevate steady-state cardiovascular and ventilatory activity levels.  相似文献   

3.
Following a relatively large meal (2% body mass of dry pellets), intestinal blood flow in chinook salmon (Oncorhynchus tshawytscha) increased significantly, up to 81%, between 14 and 29 h postprandially. Also, 15 h postprandially, oxygen consumption (M(2)) was elevated by 128% compared with a measurement of routine M(2) made after 1 wk of fasting. The postprandial increase in MO(2) (the heat increment) was 33 micromol O(2) min(-1) kg(-1). Because intestinal blood flow is known to decrease during swimming activity in fish, we therefore tested the hypothesis that swimming fish would have to make a trade-off between maximum swimming activity and digestive activity by comparing the swimming performance and metabolic rates of fed and fasted chinook salmon. As expected, MO(2) increased exponentially with swimming velocity in both fed and fasted fish. Moreover, the heat increment was irreducible during swimming, such that MO(2) remained approximately 39 micromol O(2) min(-1) kg(-1) higher in fed fish than in fasted fish at all comparable swimming speeds. However, maximum M dot o2 was unaffected by feeding and was identical in both fed and fasted fish (approximately 250 micromol O(2) min(-1) kg(-1)), and, as a result, the critical swimming speed (U(crit)) was 9% lower in the fed fish. Three days after the fish were fed and digestion was completed, MO(2) and U(crit) were not significantly different from those measured in fasted fish. The ability of salmonids to maintain feeding metabolism during prolonged swimming performance is discussed, and it is suggested that reduced swimming performance may be due to postprandial sparing of intestinal blood to support digestion, thereby limiting the allocation of blood flow to locomotory muscles.  相似文献   

4.
Apparent specific dynamic action (SDA) amplitude in young juvenile Atlantic cod Gadus morhua (1 to 8 g wet mass), fed a standardized meal and then exercised in a circular swimming respirometer at a constant swimming speed of 0·5 ± 0·3 body lengths s-1, occurred within l h after feeding in all juveniles. SDA amplitude were 1·4 to 1·8 times higher in fed fish compared to unfed fish, and rates of oxygen consumption decreased as body mass increased. SDA duration had a tendency to decrease with increasing body mass and was shortest, at 6 h, in the smallest fish (1–1·5 g), but increased to 10–11 h in the largest fish. Apparent SDA in fed fish ( R r) scaled with a mass exponent of 0·89, while maximum metabolic rate ( R max) determined by chasing fish to exhaustion and then measuring oxygen consumption for 12 h, and unfed routine metabolic rate (Rr) scaled with a mass exponent of 0·79 and 0·76 respectively. Relative aerobic scope ( R max– unfed R r) did not appear to vary over the 1 to 8 g increase in wet mass. These results show that as body mass increased in young juvenile Atlantic cod: (1) apparent SDA ( R f) increased more rapidly than R max, and (2) apparent SDA took up >98% of the relative aerobic scope and that young Atlantic cod allocated most of the energy to growth, and left little for other metabolic activities.  相似文献   

5.
Previous studies on metabolic responses to feeding (i.e. the specific dynamic action, SDA) in Antarctic fishes living at temperatures below zero have reported long-lasting increases and small peak responses. We therefore hypothesized that the postprandial hyperemia also would be limited in the Antarctic fish Pagothenia borchgrevinki. The proportion of cardiac output directed to the splanchnic circulation in unfed fish was 18%, which is similar to temperate fish species. Contrary to our prediction, however, gastrointestinal blood flow had increased by 88% at twenty four hours after feeding due to a significant increase in cardiac output and a significant decrease in gastrointestinal vascular resistance. While gastric evacuation time appeared to be longer than in comparable temperate species, digestion had clearly commenced twenty four hours after feeding as judged by a reduction in mass of the administered feed. Even so, oxygen consumption did not increase suggesting an unusually slowly developing SDA. Adrenaline and angiotensin II was injected into unfed fish to investigate neuro-humoral control mechanisms of gastrointestinal blood flow. Both agonists increased gastrointestinal vascular resistance and arterial blood pressure, while systemic vascular resistance was largely unaffected. The hypertension was mainly due to increased cardiac output revealing that the heart and the gastrointestinal vasculature, but not the somatic vasculature, are important targets for these agonists. It is suggested that the apparently reduced SDA in P. borchgrevinki is due to a depressant effect of the low temperature on protein assimilation processes occurring outside of the gastrointestinal tract, while the gastrointestinal blood flow responses to feeding and vasoactive substances resemble those previously observed in temperate species.  相似文献   

6.
Re-establishing the natural connectivity of rivers using fishways may mitigate the unfavourable effects of dam construction on riverine biodiversity and freshwater fish populations. Knowledge of the swimming performance of target species in specific regions is critical for designing fishways with a high passage efficiency. Substrate roughening with river stones of fishways is considered to improve fish swimming capacity by benefiting from reduced-velocity zones with lower energetic costs. However, the effectiveness of rough substrates in energy metabolism is rarely tested. We investigated the effect of substrate roughening on the swimming capacity, oxygen consumption and behaviour of Schizothorax wangchiachii from the Heishui River in a flume-type swimming respirometer. The results showed that substrate roughening improved critical and burst swimming speed by ~12.9% and ~15.0%, respectively, compared to the smooth substrate. Our results demonstrate that increased reduced-velocity zones, lowered metabolic rate and tail-beat frequency support our hypothesis that lower energetic costs improve fish swimming performance in rough substrate compared to smooth treatment. The traversable flow velocity model predicted that maximum traversable flow velocity and maximum ascent distance were higher over rough compared to smooth substrate fishways. Fishway substrate roughening may be a practical approach to improve fish swimming upstream for demersal riverine fish.  相似文献   

7.
鱼类通过鱼道内水流速度障碍能力的评估方法   总被引:3,自引:0,他引:3  
石小涛  陈求稳  黄应平  刘德富  庄平 《生态学报》2011,31(22):6967-6972
鱼类通过鱼道内水流速度障碍能力的量化对鱼道设计有重要理论和实际价值,其基础是鱼类游泳能力的测定.首先对鱼类游泳能力的研究方法进行了概述总结,指出了鱼类游泳能力经典测试方法存在测定流场与自然情况相差较大的不足;分析了关键要素如鱼类行为特征、生理耗能规律及水力特性对鱼类通过水流速度障碍能力的影响;提出了分析鱼类游泳行为和能力与特征流场的关系,探讨鱼类通过水流障碍行为规律和生理疲劳恢复特征,通过研究仿自然流态下的鱼类自由游泳行为、水力计算及生理耗能的关系,构建多因素鱼类游泳能力关系式,定量评价鱼类通过鱼道内水流速度障碍的发展方向.  相似文献   

8.
Averages of electromyogram (EMG) signals emanating from the levator arcus palatini , a small muscle involved in the operation of the operculum in rainbow trout, Salmo gairdneri , were analysed in terms of their relationship to the fish's oxygen consumption rates under various activity levels. The EMG signals were detected and transmitted with a radio-telemetry system. The EMG values showed a good correlation with corresponding oxygen consumption rates for fish under forced-swimming conditions but not when the fish was swimming spontaneously; this is attributed to an ability to regulate oxygen uptake at the gill surfaces by other means than increasing the ventilation volume, including alterations in the gill blood flow dynamics (e.g. secondary lamellar recruitment), and changes in the cardiac output. Under forced-swim conditions, where the oxygen demands by the respiring muscles were higher, increased ventilation volume, as indicated by increased opercular muscle activity, was directly related to swimming speed and oxygen uptake.  相似文献   

9.
Exercise and thermal stress both markedly raise the oxygen demandof fish. The control of ventilation under these two conditionsis apparently quite different and contrasts between speciesare noteworthy. Under both exercise and thermal stress, changes in respiratorypumping amplitude tend to be greater than changes in ventilatoryfrequency in most species. Respiratory pump uncoupling duringthermal stress is frequently seen in trout but much less soin bullhead catfish or bluegills. In fish that actively ventilate the gills while swimming, thecontrol for this probably depends on swimming muscle reflexesrather than blood humoral factors. This control mechanism mayoperate in a reverse fashion in fish that use ram-jet ventilation.During recovery from severe exercise and during thermal stressthe control of gill ventilation is apparently humoral. Of thepossible factors, blood oxygen and possibly also pH are consideredto be the most important. Evidence is summarized that suggeststhe error detector is on the arterial side of the gas exchanger.  相似文献   

10.
The efficiency of extracorporeal membrane oxygenation was studied for 2-3 hours in experiments on dogs with severe ventilatory respiratory failure. Extracorporeal oxygenation led to the decrease in arterial hypoxaemia and hypercapnia in animals. However, the variables did not reach the initial levels and were closer to normal values during veno-venous and not veno-arterial perfusion. During extracorporeal membrane oxygenation total systemic blood flow exceeded the initial level irrespective of the means of perfusion and total oxygen transport did not decline lower than the initial level. At the same time during veno-arterial perfusion oxygen delivery provided by the cardiac output decreased almost two-fold by the second hour of perfusion. This might be the reason for inadequate oxygen delivery to the brain and heart. 67% and 71% of animals survived after veno-arterial and veno-venous perfusion, respectively.  相似文献   

11.
Flow regimes are believed to be of major evolutionary significance in fish. The flow regimes inhabited by cyprinids vary extensively from still flow regimes to riptide flow regimes. To test (i) whether flow‐driven swimming performance and relevant morphological differentiation are present among fish species and (ii) whether evolutionary shifts between high‐flow and low‐flow habitats in cyprinids are associated with evolutionary trade‐offs in locomotor performance, we obtained data on both steady and unsteady swimming performance and external body shape for 19 species of cyprinids that typically occur in different flow regimes (still, intermediate and riptide). We also measured the routine energy expenditure (RMR) and maximum metabolic rate (MMR) and calculated the optimal swimming speed. Our results showed that fish species from riptide groups tend to have a higher critical swimming speed (Ucrit), maximum linear velocity (Vmax) and fineness ratio (FR) than fish from the other two groups. However, there was no correlation between the reconstructed changes in the steady and unsteady swimming performance of the 19 species. According to the phylogenetically independent contrast (PIC) method, the Ucrit was actively correlated with the MMR. These results indicated that selection will favour both higher steady and unsteady swimming performance and a more streamlined body shape in environments with high water velocities. The results suggested that steady swimming performance was more sensitive to the flow regime and that for this reason, changes in body shape resulted more from selective pressure on steady swimming performance than on unsteady swimming performance. No evolutionary trade‐off was observed between steady and unsteady swimming performance, although Ucrit and MMR were found to have coevolved. However, a further analysis within each typically occurring habitat group suggested that the trade‐off that may exist between steady and unsteady swimming performance may be concealed by the effect of habitat.  相似文献   

12.
为了确保黑鲷(Acanthopagrus schlegeli)和美国红鱼(Sciaenops ocellatus)在开放海域的养殖产量和鱼类养殖福利,在20℃下,对体长差异性不显著(P>0.05)的两种鱼进行续航游泳能力测试。首先,确定不同流速下的耐力游泳时间,然后选择耐力游泳时间为150min时的速度进行续航游泳实验。其中黑鲷和美国红鱼分别被迫以3.15和4.32 BL/s的恒定游泳速度,进行0、30min、60min、90min、120min和150min的测试,解剖鱼获得肌肉、血液和肝脏,测定样品在6个时间点的代谢物浓度,每个时间点保证3组有效数据。对0和150min的实验组对比,结果显示,两种鱼肝糖原、背肌乳酸和血糖浓度差异显著(P<0.05),肌肉糖原浓度差异不显著(P>0.05)。双变量相关分析显示,随着疲劳程度增加,肝糖原浓度下降,背肌乳酸和血糖上升。灰度关联分析和主成分分析显示,血糖和肝糖原浓度是影响疲劳的主要因素,但黑鲷相比美国红鱼,其浓度变化范围更大。综上:(1)美国红鱼比黑鲷拥有更强的游泳能力,而且黑鲷和美国红鱼不适合养殖在流速超过3.15和4....  相似文献   

13.
Some Atlantic cod in the Bornholm Basin undertake vertical foraging migrations into severely hypoxic bottom water. Hypoxic conditions can reduce the postprandial increase in gastrointestinal blood flow (GBF). This could subsequently postpone or reduce the postprandial increase in oxygen consumption (MO2), i.e. the SDA, leading to a disturbed digestion. Additionally, a restricted oxygen uptake could result in an oxygen debt that needs to be compensated for upon return to normoxic waters and this may also affect the ability to process the food. Long-term cardio-respiratory measurements were made on fed G. morhua in order to understand how the cardio-respiratory system of feeding fish respond to a period of hypoxia and a subsequent return to normoxia. These were exposed to 35% water oxygen saturation for 90 minutes, equivalent to the time and oxygen level cod voluntarily endure when searching for food in the Bornholm Basin. We found that i) gastric and intestinal blood flows, cardiac output and MO2 increased after feeding, ii) gastric and intestinal blood flows were spared in hypoxia, and iii) there were no indications of an oxygen debt at the end of the hypoxic period. The magnitude and time course of the measured variables are similar to values obtained from fish not exposed to the hypoxic period. In conclusion, when cod in the field search for and ingest prey under moderate hypoxic conditions they appear to stay within safe limits of oxygen availability as we saw no indications of an oxygen debt, or negative influence on digestive capacity, when simulating field observations.  相似文献   

14.
We have previously demonstrated a 40% increase in myocardial blood flow (MBF) during hypercapnia but no significant decrease of MBF during hypocapnia. The present study was undertaken to evaluate if epinephrine infusion, which increases both myocardial oxygen consumption (MVo2) and myocardial performance, might influence the effects of hypocapnia and hypercapnia on MBF. Induction of hypocapnia was performed by hyperventilation in closed-chest dogs anesthetized with pentobarbital. By adding carbon dioxide to the inspiratory gas, normocapnia and hypercapnia were created. Epinephrine infusion (0.8 microgram X kg-1 X min-1) increased MBF and cardiac output (CO) by 90 and 140%, respectively, while MVo2 was increased by 45%. Epinephrine had a direct coronary vasodilating effect in excess of myocardial needs evidenced by increased oxygen content of the coronary sinus blood. During epinephrine infusion, induction of hypocapnia effected no change of MBF, while myocardial oxygen extraction increased significantly. Although oxygen saturation (So2) and Po2 in the coronary sinus blood decreased, these values remained well above those with hypocapnia without epinephrine infusion, thereby excluding impaired oxygen supply to the heart. Hypercapnia induced an increase of MBF by nearly 40% despite the coronary vasodilatation already induced by epinephrine infusion.  相似文献   

15.
The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.  相似文献   

16.
This is not actually a swimming chicken, but rather a fish that fulfils a similar role for subsistence farmers and can also be farmed on a commercial scale. Like the chicken, the tilapiines are meeting protein needs in an affordable way world-wide. However, present farming strategies are struggling to meet ever-rising consumer demand.  相似文献   

17.
不同流速下杂交鲟幼鱼游泳状态与活动代谢研究   总被引:2,自引:1,他引:1  
为研究水流速度对杂交鲟幼鱼行为和代谢的影响,探讨游泳状态与活动代谢及相关游泳运动参数之间的关系,在26℃水温下,使用特制的鱼类游泳行为和活动代谢同步测定装置,测定了杂交鲟幼鱼在0.1、0.3、0.5 m/s三种流速和静水条件下的游泳状态、趋流率、摆尾频率和耗氧率。结果表明:随着流速的增大,杂交鲟幼鱼逆流前进和逆流静止游泳状态所占时间比例显著减少,而逆流后退所占时间比例显著增加,顺流而下时间比例有所上升。在0.0—0.3 m/s的流速范围内,杂交鲟幼鱼各个时段的平均趋流率、摆尾频率和耗氧率均随着流速的增加而增大,在0.3 m/s流速下分别达到100%﹑(2.53±0.34)Hz和(490.99±164.59)mg O2/(kg.h)。当流速增加至0.5 m/s时,在趋流率仍保持100%的情况下,其耗氧率相比0.3 m/s增加了21.86%,而摆尾频率却减小了6.70%。实验过程杂交鲟幼鱼趋流率与摆尾频率呈显著线性正相关,而摆尾频率与耗氧率在大部分时段却无相关性。随着时间的延长,各流速组杂交鲟幼鱼趋流率、摆尾频率和耗氧率呈现不同的变化趋势,其趋流率均相对稳定;但摆尾频率均随时间延长呈下降趋势,而耗氧率则在实验前9h随时间延长逐渐增加,随后趋于稳定。研究结果提示:杂交鲟幼鱼游泳状态的变化与流速有关,而反映运动强度大小的摆尾频率与活动代谢率的关系受到游泳状态的显著影响,同时也与运动代谢特征的时间变化有关。    相似文献   

18.
为了研究摄食和饥饿对鱼类游泳运动能力和低氧耐受的影响; 以大口黑鲈(Micropterus salmoides)为对象, 在25℃下, 测定对照组(禁食2d)、摄食组(摄食后3h)和饥饿组(禁食16d)实验鱼的日常代谢率(RMR)、活跃代谢率(AMR)、代谢范围(MS)、临界游泳速度(Ucrit)、临界氧压(Pcrit)和失去平衡点(LOE)。研究显示摄食后实验鱼RMR显著提升, AMR没有显著变化, 而MS和Ucrit显著下降(P<0.05); 饥饿后实验鱼RMR、AMR和MS均没有显著变化, 而Ucrit显著下降(P<0.05); 摄食后实验鱼Pcrit显著上升, 溶解氧(DO)高于Pcrit时的代谢率(MR)与DO之间的关系的斜率显著大于对照组所对应的斜率, 而LOE没有变化(P<0.05); 饥饿后实验鱼Pcrit和LOE均没有显著变化, 而DO 低于Pcrit时的MR与DO之间的关系的斜率显著小于对照组所对应的斜率(P<0.05)。结果表明, 摄食削弱大口黑鲈游泳运动能力是因为“心鳃”系统对其有氧代谢能力的限制; 饥饿后大口黑鲈游泳运动能力下降可能与其无氧代谢能力下降相关; 摄食削弱大口黑鲈的低氧耐受, 而饥饿后其低氧耐受有所增强, 但大口黑鲈低氧耐受总体趋于保守。  相似文献   

19.
Schools of herring exposed to progressive hypoxia show a peak in velocity during severe hypoxia, at 15–34% oxygen saturation, followed by a decrease in swimming speed until school disruption occurred. The observed increase in swimming speed during severe hypoxia reveals a graded response, since the lower the fish's swimming speed prior to severe hypoxia ( U 95−50, the speed at oxygen saturations between 95 and 50%), the greater the relative increase in swimming speed. The oxygen saturations at which both peak velocity and school disruption occurred were lower for fish with lowest U 95−50, suggesting that the fish with the slowest speed U 95−50 reach their critical PO2 (at which there is respiratory distress) last, i.e. at lower oxygen saturation. At a functional level, it is suggested that herring encountering hypoxia increase their speed in order to find more favourable conditions, and the magnitude of this increase is modulated by their respiratory distress. It is also hypothesised that the observed increase in speed may be related to an increase in the rate of position shifting within the school. Since the oxygen saturation at which the response to hypoxia occurs and the magnitude of the response are related to the fish's preferred speed prior to severe hypoxia, it is suggested that such a preferred speed should be measured in experiments testing the effect of hypoxia on fish behaviour.  相似文献   

20.
It has been postulated that a coronary vasoconstriction during hypocapnia might be opposed by a compensating coronary vasodilatation due to impaired myocardial oxygen supply. The present study was performed first to examine whether a maximal decline in coronary sinus (CS) oxygen content was reached during hypocapnia. During hypercapnia a myocardial "over perfusion" has been demonstrated. The second purpose of the present study was to examine whether a myocardial "over perfusion" is essential to maintain a sufficient myocardial tissue oxygen supply during hypercapnia. Closed-chest dogs were anesthetized with pentobarbital and hypocapnia was induced by hyperventilation. Nitrogen gas and carbon dioxide could both be added to the inspiratory gas to create arterial hypoxemia (arterial SO2 65%) and hypercapnia, respectively. Arterial hypoxemia during hypocapnia increased myocardial blood flow (MBF) by 50%, while CS SO2 decreased significantly. The decrease in CS SO2 demonstrates a reserve capacity of myocardial oxygen extraction during hypocapnia, thereby ruling out any major coronary vasoconstriction during hypocapnia. Hypercapnia during normoxemia increased MBF, myocardial oxygen delivery, and CS SO2 substantially, but this was not observed when hypercapnia was created during arterial hypoxemia. From the present results we conclude that hypocapnia does not cause any major coronary vasoconstriction, while hypercapnia results in a myocardial "over perfusion," which is a luxury perfusion not essential to maintain sufficient myocardial oxygen supply during hypercapnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号