首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stimulation of steroidogenesis by antimitotic drugs has been studied in wild-type (Y-1) and cAMP-dependent protein kinase-deficient (kin-8) mouse adrenal tumor cell lines. Unlike some other cells, Y-1 cells do not increase their cAMP output upon exposure to antimitotic drugs such as colchicine, vinblastine or podophyllotoxin, which readily increase steroidogenesis. Moreover, no increase in cAMP can be detected over an extended time span. Stabilization of tubulin polymers by taxol or high concentrations of vinblastine blocks ACTH-, cholera toxin- or colchicine-stimulated steroidogenesis without major effects on cAMP levels. Colchicine and podophyllotoxin stimulate steroidogenesis in the cAMP-dependent protein kinase-deficient mutant to the same degree as in the wild-type Y-1 cells, although absolute steroid yields are lower in the mutant cells. We suggest that the antimitotic agents stimulate adrenal steroidogenesis by a cAMP-independent pathway that may involve facilitation of cholesterol access to the mitochondrion.  相似文献   

2.
Cultured Y-1 mouse adrenal tumor cells treated with ACTH (0.5 U/ml) rounded, formed filopodia and numerous thin microvilli, and produced steroids. Rounding, filopodia and bleb formation occurred for trypsin (0.01%), and hyaluronidase (0.1%), treated cells; but neither affected control or ACTH-stimulated steroidogenesis. Neuraminidase treatment (20 mU/ml) caused rounding, thin microvilli, bleb formation, slightly increased steroid production and prevented subsequent ACTH effects. Neuraminidase appeared to alter a carbohydrate-containing ACTH receptor preventing ACTH binding. We conclude rounding and steroidogenesis are not always associated.  相似文献   

3.
4.
K Moriwaki  Y Itoh  S Iida  K Ichihara 《Life sciences》1982,30(25):2235-2240
Forskolin, a unique diterpene which directly activates the adenylate cyclase, stimulated production of both cyclic AMP and corticosterone in isolated rat adrenal cells, in vitro. This agent also potentiated the action of adrenocorticotropin and/or cholera toxin on cyclic AMP production and steroidogenesis at lower concentrations. It augmented both an early (cyclic AMP production) and a late (steroidogenesis) action of the hormone in the adrenal gland.  相似文献   

5.
When Y-1 mouse adrenal tumor cells were treated with sodium orthovanadate, an agent disrupting BHK21-F cell microtubule-intermediate filament (IF) interactions, there was no change in the amount of 20-dihydroprogesterone produced. A neurofilament-microtubule perturbing agent, beta,beta-iminodipropionitrile (IDPN), enhanced the ability of Y-l cells to produce steroid in response to ACTH by acting on the plasma membrane. Electron microscopy of Y-l cells extracted with Triton X-100 revealed that both vanadate and IDPN caused the aggregation of granular structures in the perinuclear area. Based on the steroidogenic effects of IDPN, perinuclear granule aggregation may result from an altered interaction between intermediate filaments, microtubules and the plasma membrane. The reason for the ultrastructural changes caused by vanadate is unknown.  相似文献   

6.
The plant lectins, concanavalin A (conA), wheat germ agglutinin (WGA), and phytohemagglutinin (PHA) stimulate steroidogenesis in cultured adrenal tumor cells. ConA maximally stimulated steroidogenesis at 100 μg/ml following an approximate 4 h lag phase. ConA stimulation was completely inhibited by α-methyl-d-mannopyranoside and the WGA effect was prevented by N-acetyl-d-glucosamine. It was also found that conA alone did not cause a measurable increase in either intra- or extracellular cyclic adenosine 3′5′-monophosphate (cAMP) production. In addition, conA when added simultaneously with adrenocorticotropin (ACTH) doubled the intra- and extracellular cAMP production over controls treated with ACTH alone. This enhancement effect was dose dependent. When Y-1 cells were preincubated with conA and then treated with either ACTH or cholera enterotoxin (CT) there was a dose- and time-dependent inhibition of induced cAMP production. In the case of CT, the inhibitory effect occurred even with simultaneous addition of conA and CT. This effect was reversed by addition of both α-methyl-d-mannopyranoside and washing with Eagle's minimal essential medium (MEM) 1 h after CT had bound to its receptor. This reversal was not apparent for the inhibitory effect of conA on ACTH-induced cAMP production which occurred after 2 h of preincubation with conA. These results demonstrate that conA, as well as the other plant lectins, interact with specific membrane receptors to reversibly stimulate steroid production as well as enhancing or inhibiting ligand-induced cAMP production in cultured adrenal tumor cells.  相似文献   

7.
Initial studies of adrenocorticotropin-sensitive (ACTH-sensitive) and ACTH-insensitive Y-1 adrenal cortical tumor cell lines suggest a relationship between responsiveness to ACTH and the presence of gap junctions. An ACTH-sensitive clone of Y-1 cells possesses gap junctions and these junctions appear to enlarge with ACTH treatment. Gap junctions have not been observed, however, in an ACTH-insensitive clone of Y-1 tumor cells even when stimulated to produce cyclic adenosine monophosphate and steroids with cholera toxin.  相似文献   

8.
Somatostatin (SRIF) is a potent inhibitor of angiotensin II (AII)-stimulated aldosterone production in rat adrenal glomerulosa cells. This inhibition can be prevented by pretreatment of the cells with pertussis toxin, but little else is known about either the specificity or the biochemical bases of SRIF action in this tissue. We therefore conducted detailed studies of the influence of SRIF on steroidogenesis elicited by AII and the other two physiological stimuli of aldosterone production, K+ and adrenocorticotropic hormone (ACTH), in rat adrenal glomerulosa cells. We also determined the effects of SRIF on cytosolic calcium concentration ([Ca2+]i) and cellular cAMP levels. In these studies, SRIF was found to inhibit the aldosterone responses elicited by low concentrations of all three stimuli, which are believed to promote steroid secretion via discrete but interacting cellular signalling mechanisms. In addition, SRIF consistently lowered cellular cAMP levels in the presence of each of the three agents. However, SRIF caused a small and transient increase rather than a decrease in basal ([Ca2+]i), and had no effect on the subsequent elevation of ([Ca2+]i) by AII and K+. These data indicate that activation of a Gi-like protein by SRIF influences steroid responses to all three major regulators of glomerulosa-cell function, and suggest that basal levels of cAMP play a facilitatory or permissive role in the control of aldosterone production by predominantly calcium-mobilizing regulators of mineralocorticoid secretion.  相似文献   

9.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

10.
11.
12.
Summary An improved basal medium is presented that requires only minimal supplementation with dialyzed fetal bovine serum or bovine serum albumin and fetuin to be comparable to Ham's F-10, which requires 15% horse serum (HS) and 2.5% fetal bovine serum (FBS) for the growth and function of Y-1, mouse adrenal cortex tumor, cells. Cell monolayers maintained for up to 2 weeks without any protein supplementation have retained their steroid response to ACTH. The medium differs from Ham's F-10 in its buffer composition and higher calcium-ion concentration. This medium should be a useful adjunct to studies pertaining to steroid and lipid intermediary metabolism, the retention of a specialized physiological function in a chemically defined medium, and the mechanism of hormonal response. Supported by the Medical Research Service of the Veterans Administration.  相似文献   

13.
14.
Aldosterone secretion from adrenal glomerulosa cells can be stimulated by angiotensin II (AII), extracellular potassium and adrenocorticotropin (ACTH). Since the mitochondria can recognize factors generated by AII (cyclic-AMP-independent) and ACTH (cyclic AMP dependent), it is reasonable to postulate the existence of a common intermediate in spite of a different signal transduction mechanism. We have evaluated this hypothesis by stimulation of mitochondria from glomerulosa gland with fractions isolated from glomerulosa gland stimulated with AII or from fasciculata gland stimulated with ACTH; the same fractions were tested using mitochondria from fasciculata cells. Postmitochondrial fractions (PMTS) obtained after incubation of adrenal zona glomerulosa with or without AII (10(-7) M) or ACTH (10(-10) M), were able to increase net progesterone synthesis 5-fold in mitochondria isolated from non-stimulated rat zona glomerulosa. In addition, AII in zona glomerulosa produced in vitro steroidogenic fractions that were able to stimulate mitochondria from zona fasciculata cells. Inhibitors of arachidonic acid release and metabolism blocked corticosterone production in fasciculata cells stimulated with ACTH. This concept is supported by the experiment in which bromophenacylbromide and nordihydroguaiaretic acid also blocked the formation of an activated PMTS. In fact, non-activated PMTS, in the presence of exogenous arachidonic acid AA, behaved as an activated PMTS from ACTH stimulated cells. We suggest that the mechanisms of action of ACTH and AII involve an increase in the release of AA and an activation of the enzyme system which converts AA in leukotriene products.  相似文献   

15.
Cultured human adrenal cortical adenocarcinoma cells (SW-13) form a confluent monolayer of epithelial-like cells when seeded into culture flasks. Following a 24-48 hr non-mitotic period, cells begin to divide and become confluent within a week after seeding at 5 X 10(4) cells/cm2. The SW-13 cells were exposed to dibutyryl cyclic AMP (DbcAMP), cyclic AMP (cAMP), sodium butyrate, and adrenocorticotropin (ACTH). The rate of SW-13 cell proliferation was measured with a DNA microfluorometric assay, as well as by procedures measuring the incorporation of 3H-thymidine. In addition, following administration of ACTH and DbcAMP, the fractional area of membrane covered by gap junctions was quantitated with freeze-fracture electron microscopic techniques. Dibutyryl cyclic AMP at a concentration of 1 X 10(-3) M decreased the growth rate of the cell population. There was a corresponding increase in the fractional area of gap junctions found on the cell membrane in 96-hr DbcAMP-treated cultures. ACTH (40 mU/ml) exposure failed to produce an increase in the fractional area of gap junctions or to alter the rate of cell proliferation. From these data it can be suggested that elevations in cAMP levels within the cell can be related to both the proliferation of gap junctions and the decrease in cell proliferation in the SW-13 tumor cell.  相似文献   

16.
Our results demonstrate that adrenocorticotropin (ACTH)-induced refractoriness occurs in cultured adrenal tumor cells. Cells became 85% refractory to ACTH-induced cyclic AMP formation in 20 min and the effect persisted if the hormone remained in the incubation medium. Refractory cells gradually regained hormone-specific responsiveness within 24 h if cultures were incubated in fresh media containing serum. The observed effect is hormone specific since cyclic AMP could not induce unresponsiveness to ACTH. The addition of ACTH plus inhibitors of protein synthesis partially reversed hormone-specific refractoriness. However, preincubation with cycloheximide or diphtheria toxin led to superinduction of ACTH-induced cyclic AMP formation. These experimens suggest that unresponsiveness, following hormonal activation of adrenal cells may be related to a decrease in hormone-specific binding sites or to synthesis of an adenylate cyclase inhibitor.  相似文献   

17.
The effect of ACTH on glycolysis has been studied in Y-1 tumor adrenal cells. ACTH caused a sustained increase in the liberation of lactate as well as a stimulation of both basal and glucose-induced fructose 2,6-bisphosphate content. ACTH produces changes also in the activities of phosphofructokinase-1 and phosphofructokinase-2. The addition of Ca2+ or dibutyryl cyclic AMP did not modify neither lactate production nor fructose 2,6-bisphosphate levels. The results suggest that fructose 2,6-bisphosphate regulates ACTH-induced glycolysis at the phosphofructokinase-1 step, although the biochemical mechanism of phosphofructokinase-2 activation remains elusive.  相似文献   

18.
Summary Y-1 cells were passaged weekly for 6 wk in MACT IV medium without a period of adaptation to this basal medium that requires 1% dialyzed fetal bovine serum as a supplement. The steroid pathway and chromosome number, reported earlier for this cell line under culture conditions that used much higher concentrations of nondialyzed sera, remained stable despite dialysis and reduction of the fetal bovine serum to 1%. Mass spectral analyses were carried out at the Mass Spectrometric Facility for Biomedical Research, Department of Biochemistry, Faculty of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, supported by NIH Grant RR-00273. This research was supported by the Medical Research Service of the Veterans Administration.  相似文献   

19.
Isolated adrenal cells from Vitamin E-deficient and control rats were prepared by a trypsin digestion method. Cyclic adenosine 3',5'-monophosphate (cyclic AMP) formation was studied in response to adrenocorticotropin (ACTH) in the presence and absence of ascorbate by measuring the conversion of prelabeled adenosine 5'-triphosphate [14C]ATP to cyclic [14C]AMP. Ascorbate (0.5 mM) inhibited ACTH-induced cyclic [14C]AMP formation in adrenal cells isolated from Vitamin E-deficient rats but had no effect in the control cells. The inhibitory effect of ascorbate on ACTH-induced cyclic AMP formation in Vitamin E-deficient rats decreased as the concentration of ACTH increased. In Vitamin E-deficient rats ascorbate inhibited ACTH-induced cyclic [14C]AMP formation after 30 min of incubation. There was no further significant accumulation of cyclic [14C]AMP at 60 min or 120 min although in the absence of ascorbate cyclic [14C]AMP continued to be formed. The in vitro addition of alpha-tocopherol reduced the inhibition of ACTH-induced cyclic [14C]AMP formation by ascorbate in Vitamin E-deficient rats. These studies suggest that alpha-tocopherol and ascorbate may affect ACTH-induced cyclic AMP formation through interaction with the membrane-bound enzyme adenylate cyclase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号