首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antiserum against a rat gastric mucosa non-pepsin acid proteinase precipitates rat neutrophil cathepsin E, with a precipitation curve essentially similar to that of the gastric enzyme. Taken together that the antiserum precipitates a cathepsin E-like acid proteinase from rat spleen (Muto, N., Yamamoto, M. and Tani, S. (1987) J. Biochem. (Tokyo) in press), the data indicate that the non-cathepsin D acid proteinases in rat neutrophils, gastric mucosa and spleen are immunochemically closely related. In contrast with the earlier data, cathepsin E from rabbit neutrophils exhibited a maximal activity at around pH 3.0-3.2 and preferred hemoglobin to albumin as substrate, which supports that the non-cathepsin D acid proteinases in the rat tissues are relevantly classified as cathepsin E.  相似文献   

2.
The subcellular localization of rat neutrophil cathepsin E was examined by a modification of the method of N. Borregaard et al. [(1983) J. Cell Biol. 97, 52-61]. When the postnuclear cavitate of rat neutrophils was subjected to density centrifugation on discontinuous Percoll gradients, three particulate bands, P1 (lowest; azurophil granule rich), P2 (middle; specific granule rich), and P3 (highest; plasma membrane rich), were segregated. A combined application of immunochemical and electrophoretic methods revealed a striking difference in subcellular localization between cathepsin E and cathepsin D: Cathepsin E was associated with P3 and soluble fractions, and cathepsin D was chiefly associated with P1 and P2 fractions. The results thus indicate that cathepsin E is a nonlysosomal acid proteinase in rat neutrophils. It was found that cathepsin E existed in two enzymatically active molecular forms, referred to as CE-I and CE-II, in rat neutrophil extracts. To examine the relationships between the two forms, cathepsin E was purified to homogeneity from rat gastric mucosae. The purified enzyme exhibited a single protein band of 43 kDa on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, but electrophoresis without SDS, followed by visualization of activity in the gel, revealed two activity bands corresponding to CE-II and CE-I in neutrophil extracts. Pretreatment of the enzyme with beta-mercaptoethanol or dithiothreitol resulted in an increase in CE-I activity with a concomitant decrease in CE-II activity on gels. Upon gel filtration, the molecular weights of CE-II and CE-I were estimated to be 98,000 and 51,000, respectively, strongly suggesting that they are the dimeric and monomeric forms of the cathepsin E subunit.  相似文献   

3.
Two unique cathepsin D-type proteases apparently present only in rat thoracic duct lymphocytes and in rat lymphoid tissues are described. One, termed H enzyme, has an apparent molecular weight of similar to95,000; the other, termed L enzyme, has an apparent molecular weight of similar to45,000, in common with that of most cathepsins D from other tissues and species. Both enzymes differ from cathepsin D, however, by a considerably greater sensitivity to inhibition by pepstatin and by a smaller degree of inhibition by an antiserum which inhibits rat liver cathepsin D. H enzyme is converted to L enzyme by treatment with beta-mercaptoethanol; the relationship between the two enzymes remains unknown. H and L enzyme have been detected in rat lymphoid tissues and in mouse spleen, but they are not present in other rat tissues (liver, kidney, adrenals), rabbit tissues, calf thymus, bovine spleen, or human tonsils. As measured on acid-denatured bovine hemoglobin as substrate, both enzymes have pH activity curves identical with that of rat liver cathepsin D, with optimal activity at pH 3.6. Activity on human serum albumin is much less and also shows an optimum at pH 3.6; hence, neither enzyme has the properties of cathepsin E. Thiol-reactive inhibitiors have no effect on the activity of H and L enzyme; thus they do not belong to the B group of cathepsins. Additional information, discussed in this paper, leads us to conclude that partially purified H and L enzymes are cathepsin D-type proteases.  相似文献   

4.
Cathepsin D was purified from ovaries of Xenopus laevis by both QAE-cellulose and pepstatin-Sepharose chromatography and then characterized and compared with Xenopus liver cathepsin D. Ovary cathepsin D appeared predominantly as a 43-kilodalton (kDa) molecular mass, as revealed by SDS-polyacrylamide gel electrophoresis, whereas the liver enzyme was obtained exclusively as a 36-kDa protein. The purified 43-kDa ovary enzyme cleaved vitellogenin limitedly to produce yolk proteins at pH 5.6. The specific activity of ovary cathepsin D was five to six times lower than that of the liver enzyme, as measured by hemoglobin-hydrolysis at pH 3, but the ovary enzyme was shown to be superior to the liver enzyme in terms of vitellogenin-cleaving activity, as examined at pH 5.6. Ovarian enzyme preparations contained variable amounts of 36-kDa species; this form was considered to be an autolytic product of the 43-kDa form arising during purification, because it was not detected in oocyte extracts but was generated by incubation of the purified 43-kDa enzyme alone in an acid solution. The conversion of the 43-kDa form by hepatic factors was accompanied by a marked increase in hemoglobin-hydrolytic activity.  相似文献   

5.
An erythrocyte membrane-associated cathepsin D-like acid proteinase, termed "EMAP," was purified to homogeneity from freshly collected rat blood in a yield of 60-65%. The molecular weight of the enzyme was determined to be 80,000-82,000 by Sephadex G-100 gel filtration. The enzyme was inhibited strongly by pepstatin and partially by HgCl2, Pb(NO3)2, and iodoacetic acid. The preferred substrate for the enzyme was hemoglobin. The enzyme also hydrolyzed serum albumin and casein, but to lesser extents, with an optimum pH of 3.5-4.0. However, it could not hydrolyze leucyl-2-naphthylamide, benzyloxycarbonyl-Phe-Arg-4-methyl-7-coumarylamide or other synthetic substrates at pH values ranging from 3.5 to 9.5. The enzyme was very similar to human EMAP in a number of enzymatic properties, whereas it differed from rat cathepsin D in several respects, such as pH stability, molecular weight, isoelectric point, and chromatographic properties. Immunologically, the enzyme cross-reacted with the rabbit antibody prepared against human EMAP. The patterns of immunoelectrophoresis, immunoblotting, and immunoprecipitation of the enzyme were remarkably similar, if not identical, to those of human EMAP. In contrast, rat EMAP showed no reaction with the rabbit antibody raised to rat spleen cathepsin D. These results indicate that EMAP is a unique cathepsin D-like acid proteinase different from ordinary cathepsin D.  相似文献   

6.
1. Renin was purified 30 000-fold from rat kidneys by chromatography on DEAE-cellulose and SP-Sephadex, and by affinity chromatography on pepstatinyl-Sepharose. 2. The enzymatic properties of isorenin from rat brain, pseudorenin from hog spleen, cathepsin D from bovine spleen, and renin from rat kidneys were compared: Isorenin, pseudorenin and cathepsin D generate angiotensin from tetradecapeptide renin substrate with pH optima around 4.9, renin at 6.0. With sheep angiotensinogen as substrate, isorenin, pseudorenin and cathepsin D have similar pH profiles (pH optima at 3.9 and 5.5), in contrast to renin (pH optimum at 6.8). 3. The angiotensin-formation from tetradecapeptide by isorenin, pseudorenin and cathepsin D was inhibited by albumin, alpha-and beta-globulins. These 3 enzymes have acid protease activity at pH 3.2 with hemoglobin as the substrate. Renin is not inhibited by proteins and has no acid protease activity. 4. Renin generates angiotensin I from various angiotensinogens at least 100 000 times faster than isorenin, pseudorenin or cathepsin D, and 3000 000 times faster than isorenin when compared at pH 7.2 with rat angiotensinogen as substrate. 5. The 3 'non-renin' enzymes exhibit a high sensitivity to inhibition by pepstatin (Ki less than 5.10(-10) M), in contrast to renin (Ki approximately 6-10(-7) M), at pH 5.5. 6. It is concluded from the data that isorenin from rat brain and pseudorenin from hog spleen are closely related to, or identical with cathepsin D.  相似文献   

7.
We isolated and sequenced a cDNA clone corresponding to the entire coding sequence of rat liver lysosomal cathepsin D. The deduced amino acid sequence revealed that cathepsin D consists of 407 amino acid residues (Mr 44,608) and the 20 NH2-terminal residues seem to constitute a cleavable signal peptide after which 44 amino acid residues follow as a propeptide. Two putative N-linked glycosylation sites and aspartic acid in the active site are as well conserved as those of human lysosomal cathepsin D. In the NH2-terminal sequence analysis of two isolated heavy chains of the mature enzyme, the termini were assigned as tryptophan (118th residue) and glycine (165th or 166th residue), respectively, hence demonstrates that the two heavy chains derive from a split of the single chain of cathepsin D at position between 117th and 118th or between 164th and 165th or 165th and 166th amino acids. We conclude that cathepsin D in rat liver lysosomes is a mixture of three forms composed of a single and two two-chain forms. However, the amounts of the two two-chain forms are low compared with that of the single chain form. Densidometric determination after SDS-PAGE revealed that the two two-chain forms account for less than 5% of the single chain form. There is a 82% similarity in amino acid level between rat and human liver lysosomal cathepsin D.  相似文献   

8.
The antiserum raised against the high-molecular-weight acid proteinase from rat gastric mucosa, termed 86-kDa acid proteinase, has been shown to recognize rat cathepsin E, but not cathepsin D (Muto, N. et al. (1987) J. Biochem. 101, 1069-1075). Using this specific antiserum, characteristic distribution of cathepsin E in rats was demonstrated. The enzyme was detected in a limited number of tissues, such as stomach, thymus, spleen, bladder, and erythrocyte membranes. Among them, the highest activity was observed in the stomach. In contrast, cathepsin D immunoreactive with the antiserum specific to rat gastric cathepsin D was demonstrated in all the tissues examined. Cathepsin E-type enzymes partially purified from these five tissues were precipitated in the same manner by the specific antiserum, and they had the same molecular weight, electrophoretic mobility, and resistance against denaturation by 4 M urea. These results indicate that they could be exactly classified as cathepsin E. This type of enzyme was also detectable in mice and guinea pigs, but they showed relatively weak immunoreactivities with the antiserum. Thus, it is concluded that the distribution of cathepsin E is intrinsically different from ordinary cathepsin D, suggesting that it has a different physiological role from cathepsin D.  相似文献   

9.
Structures at the proteolytic processing region of cathepsin D   总被引:7,自引:0,他引:7  
The amino acid sequences at the "proteolytic processing regions" of cathepsin Ds have been determined for the enzymes from cows, pigs, and rats in order to deduce the sites of cleavage as well as the function of the proteolytic processing of cathepsin D. For bovine cathepsin D, the "processing region" sequence was determined from a peptide isolated from the single-chain enzyme. The COOH-terminal sequence of the light chain and the NH2-terminal sequence of the heavy chain were also determined. The processing region sequence of porcine cathepsin D was determined from its cDNA structure, and the same structure from rat cathepsin D was determined from the peptide sequence of the single-chain rat enzyme. From sequence homology to other aspartic proteases whose x-ray crystallographic structures are known, such as pepsinogen and penicillopepsin, it is clear that the processing regions are insertions to form an extended beta-hairpin loop between residues 91 and 92 (porcine pepsin numbers). However, the sizes of the processing regions of cathepsin Ds from different species are considerably different. For the enzymes from rats, cows, pigs, and human, the sizes of the processing regions are 6, 9, 9, and 11 amino acid residues, respectively. The amino acid sequences within the processing regions are considerably different. In addition, the proteolytic processing sites were found to be completely different in the bovine and porcine cathepsin Ds. While in the porcine enzyme, an Asn-Ser bond and a Gly-Val bond are cleaved to release 5 residues as a consequence of the processing; in the bovine enzyme, two Ser-Ser bonds are cleaved to release 2 serine residues. These findings would argue that the in vivo proteolytic processing of the cathepsin D single chain is probably not carried out by a specific "processing protease." Model building of the cathepsin D processing region conformation was conducted utilizing the homology between procathepsin D and porcine pepsinogen. The beta-hairpin structure of the processing region was found to (i) interact with the activation peptide of the procathepsin D in a beta-structure and (ii) place the Cys residue in the processing region within disulfide linkage distance to Cys-27 of cathepsin D light chain. These observations support the view that the processing region of cathepsin D may function to stabilize the conformation of procathepsin D and may play a role in its activation.  相似文献   

10.
R E Carraway  S P Mitra  K Muraki 《Peptides》1991,12(1):107-112
Lysates of isolated rat polymorphonuclear leukocytes and macrophages were found to generate xenopsin-related peptides when incubated with a liver extract used as a source of precursor. The lysosomal enzyme, cathepsin D, was also shown to display this property and to share with the lysate a similar pH dependence (optimum, approximately pH 3.5) and sensitivity to the acid protease inhibitor, pepstatin A (ID50: lysate, 10 nM; cathepsin D, 30 nM). When subjected to HPLC on mu-Bondapak C-18, the xenopsin-related peptides generated by the lysate eluted near to those formed by cathepsin D and when tested in a radioreceptor assay for neurotensin, they displayed similar cross-reactivities (peak 2, approximately 50%; peak 1, approximately 100%). These results indicate that cathepsin D from lysed granulocytes can process precursor protein(s) to form radioreceptor-active xenopsin-related peptides.  相似文献   

11.
The breakdown of cytoplasmic tubulin from brain (purified by ammonium sulfate fractionation and DEAE cellulose chromatography) by cathepsin D from brain (purified by ammonium sulfate fractionation and pepstatin Sepharose chromatography) was studied; changes in the intensity of tubulin gel bands were determined. The pH optimum of hemoglobin breakdown by cathepsin D was 3.2; the pH optimum for tubulin breakdown was 5.8; at pH 5.8 there was no significant hemoglobin breakdown by the enzyme. Tubulin breakdown had an apparent Km of 1.8 × 10−5 M and a Vmax of 0.56 μg tubulin (μg enzyme per min). The rate of breakdown was heterogeneous and studied on length of incubation; the major portion of tubulin was rapidly broken down and a smaller portion was more stable. The rate under our experimental conditions was 18%/h in the 1–4 h period and 2%/h after 4 h. This was not due to enzyme instability: after 4 h of inhibition freshly added tubulin was rapidly broken down, whereas freshly added enzyme did not increase the rate of breakdown. Thus breakdown heterogeneity was due to substrate (tubulin) heterogeneity. Pepstatin inhibited cathepsin D breakdown of tubulin at acid pH; at pH 7.6 it had no effect. Leupeptin was not inhibitory. We calculated that the cathepsin D content in brain, if fully active, could break down cytoplasmic tubulin with a half-life of 24 h, but it is likely that under in vivo conditions enzyme activity is greatly modified.  相似文献   

12.
1. An enzyme present in rat liver extracts degraded insoluble collagen maximally at pH3.5. Collagenolytic activity was more abundant in kidney, spleen and bone marrow and was also present in decreasing concentrations in ileum, lung, heart, skin and muscle. 2. The crude collagenolytic cathepsin was activated by cysteine and dithiothreitol, but not by 2-mercaptoethanol. Iodoacetamide, p-chloromercuribenzoate and 7-amino-1-chloro-3-l-tosylamidoheptan-2-one hydrochloride inhibited the enzyme. Zn(2+), Fe(3+) and Hg(2+) ions were strongly inhibitory, but Ca(2+), Co(2+), Mg(2+) and Fe(2+) ions had little or no effect. EDTA was an activator of the enzyme. Inhibitors of cathepsin B were found to enhance collagenolysis, but phenylpyruvic acid, a cathepsin D inhibitor, inhibited the enzyme. Di-isopropyl phosphorofluoridate had no effect. 3. Collagenolysis at pH3.5 and 28 degrees C was restricted to cleavage of the telopeptide region in insoluble collagen, and the material that was solubilized consisted mostly of alpha-chains. 4. The collagenolytic cathepsin was separated from cathepsins B2 and D by fractionation on Sephadex G-100 and a partial separation from cathepsin B1 was obtained by chromatography on DEAE-Sephadex. 5. The function of the collagenolytic cathepsin in the catabolism of collagen is discussed in relation to the action of the other lysosomal proteinases and the neutral collagenase.  相似文献   

13.
Total and specific activity of cathepsin D (EC. 3.4.23.5) were measured in rat liver and brain from 1 to 98 days of age. The activity of cathepsin D in the liver of adult and newborn rats was the same while in the rat brain it was higher in adult than in newborn rats. In the liver maximum specific activity of cathepsin D occurred on the 10th postnatal day and minimum on the fourth day of age. In the brain maximum specific activity of the enzyme occurred on the 14th postnatal day. Total activity of cathepsin D increased after birth in rat liver and brain. These results are discussed in relation to the functional role of cathepsin D in the rat liver and the brain.  相似文献   

14.
We have defined the in vivo and in vitro metabolic fate of internalized cholera toxin (CT) in the endosomal apparatus of rat liver. In vivo, CT was internalized and accumulated in endosomes where it underwent degradation in a pH-dependent manner. In vitro proteolysis of CT using an endosomal lysate required an acidic pH and was sensitive to pepstatin A, an inhibitor of aspartic acid proteases. By nondenaturating immunoprecipitation, the acidic CT-degrading activity was attributed to the luminal form of endosomal cathepsin D. The rate of toxin hydrolysis using an endosomal lysate or pure cathepsin D was found to be high for native CT and free CT-B subunit, and low for free CT-A subunit. On the basis of IC(50) values, competition studies revealed that CT-A and CT-B subunits share a common binding site on the cathepsin D enzyme, with native CT and free CT-B subunit displaying the highest affinity for the protease. By immunofluorescence, partial colocalization of internalized CT with cathepsin D was confirmed at early times of endocytosis in both hepatoma HepG2 and intestinal Caco-2 cells. Hydrolysates of CT generated at low pH by bovine cathepsin D displayed ADP-ribosyltransferase activity towards exogenous Gsalpha protein suggesting that CT cytotoxicity, at least in part, may be related to proteolytic events within endocytic vesicles. Together, these data identify the endocytic apparatus as a critical subcellular site for the accumulation and proteolytic degradation of endocytosed CT, and define endosomal cathepsin D an enzyme potentially responsible for CT cytotoxic activation.  相似文献   

15.
Human cathepsin B1. Purification and some properties of the enzyme   总被引:8,自引:31,他引:8       下载免费PDF全文
1. Cathepsin B1 was purified from human liver by a method involving autolysis, fractional precipitation with acetone, adsorption on, and stepwise elution from, CM-cellulose and an organomercurial adsorbent, gel chromatography and finally equilibrium chromatography on CM-cellulose. 2. The early stages of the procedure, including the use of the organomercurial adsorbent, were suitable for the simultaneous isolation of cathepsin D. The two cathepsins were sharply separated on the organomercurial column, and particular attention was given to the method for the preparation and use of this adsorbent. 3. A method is described for the staining of analytical isoelectric-focusing gels for cathepsin B1 activity, as well as protein. By this method it was shown that cathepsin B1 was represented by at least six isoenzymes during the greater part of the purification procedure. After the gel-chromatography step this group of isoenzymes was obtained essentially free of other proteins, in good yield. The isoenzymes were resolved from this mixture by chromatography on CM-cellulose. The purified enzyme was stable for several weeks at slightly acid pH values in the absence of thiol compounds; it was unstable above pH7. 4. The pI values of the isoenzymes of cathepsin B1 extended from pH4.5 to 5.5, that of the major isoenzyme tending to increase from 5.0 to 5.2 during the purification procedure. Gel chromatography indicated a molecular weight of 27500 for all of the isoenzymes, whereas polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate gave a value of 24000. 5. An antiserum raised in sheep against the purified enzyme reacted specifically with the alkali-denatured molecule. Purified cathepsin B1 contained no material precipitable by an anti-(human cathepsin D) serum. 6. The enzyme hydrolysed several N-substituted derivatives of l-arginine 2-naphthylamide, as well as haemoglobin, azo-haemoglobin, azo-globin and azo-casein. Greatest activity was obtained near pH6.0. 7. The sensitivity of human cathepsin B1 to chemical inhibitors was generally similar to that of other thiol proteinases. The enzyme was inactivated by the chloromethyl ketones derived from tosylphenylalanine, tosyl-lysine, acetyltetra-alanine and acetyldialanylprolylalanine. 8. The hydrolysis of alpha-N-benzoyl-dl-arginine 2-naphthylamide by extracts of human liver at pH6 was attributable entirely to cathepsin B1.  相似文献   

16.
Immunocytochemical localization of two distinct intracellular aspartic proteinases, cathepsins E and D, in human gastric mucosal cells and various rat cells was investigated by immunogold technique using discriminative antibodies specific for each enzyme. Cathepsin D was exclusively confined to primary or secondary lysosomes in almost all the cell types tested, whereas cathepsin E was not detected in the lysosomal system. The localization of cathepsin E varied with different cell types. Microvillous localization of cathepsin E was found in the intracellular canaliculi of human and rat gastric parietal cells, rat renal proximal tubule cells, and the bile canaliculi of rat hepatic cells. The immunolocalization of each enzyme in gastric cells were essentially the same in humans and rats. In the gastric feveolar epithelial cells and parietal cells, definite immunolabeling for cathepsin E was observed in the cytoplasmic matrix, the cisternae of the rough endoplasmic reticulum, and the dilated perinuclear envelope. In rat kidney, cathepsin E was detected only in the proximal tubule cells, while cathepsin D was found mainly in the lysosomes of the distal tubule cells but not in those of the proximal tubule cells. These results clearly indicate the distinct intracytoplasmic localization of cathepsins E and D and suggest the possible involvement of cathepsin E in extralysosomal proteolysis that is related to specialized functions of each cell type.  相似文献   

17.
In order to clarify the potential role of cathepsin E at neutral pH, the cleavage specificity of human cathepsin E was examined at pH 7.4 toward reduced-carboxymethylated(RCm-)ribonuclease A and various bioactive and related peptides. The specificity of the enzyme at pH 7.4 was found to be considerably different from that at acidic pH; preferential cleavages were observed with Arg-X and Glu-X bonds, which are not the major cleavage sites at acidic pH. Moreover, the Arg-Arg bond was found to be the most preferential site of cleavage. This unique specificity observed at pH 7.4 suggests the possibility that cathepsin E might be involved in processing and/or degradation of certain proteins and/or peptides at or near neutral pH in vivo.  相似文献   

18.
The localization of cathepsin D-like acid proteinase in the rat stomach and other tissues was studied, and its biochemical properties were compared with those of rat gastric cathepsin D (EC 3.4.23.5). Cathepsin D-like acid proteinase existed overwhelmingly in the mucosal layer and was hardly detected in the gastric juice. Its subcellular distribution profile was very similar to that of acid phosphatase, but not to that of pepsinogen. This proteinase-like enzyme activity was also found in rat splenic extract. These results strongly suggest that the proteinase is a lysosomal enzyme. In addition, cathepsin D-like acid proteinase demonstrated an in vitro transition of molecular species during storage at -30 degrees C. Although this molecular change was distinctive in ion-exchange column chromatography and susceptibility to some enzyme inhibitors, it was not accompanied by a significant decrease in molecular weight. To compare cathepsin D-like acid proteinase with ordinary cathepsin D, gastric cathepsin D was newly purified to apparent homogeneity in polyacrylamide gel electrophoresis. Its biochemical properties demonstrate that this is a true cathepsin D in rat gastric mucosa. Moreover, this cathepsin D activity was not abolished by treatment with antiserum specific to cathepsin D-like acid proteinase or pepsinogen. From these results, we can conclude that the proteinase is a lysosomal acid proteinase different from newly purified gastric cathepsin D.  相似文献   

19.
A cDNA clone encoding the human cysteine protease cathepsin L was expressed at high levels in Escherichia coli in a T7 expression system. The insoluble recombinant enzyme was solubilized in urea and refolded at alkaline pH. 38-kDa procathepsin L was purified by gel filtration at pH 8.0, and a 29-kDa form of the enzyme was purified by gel filtration after autoprocessing of the proenzyme at pH 6.5. The kinetic properties of the 29-kDa species of recombinant cathepsin L were similar to those published for the human liver enzyme (Mason, R. W., Green, G. D. J., and Barrett, A.J. (1985) Biochem. J. 226, 233-241), using benzyloxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide as substrate. However, the stability of the recombinant enzyme, and its pH optimum for this substrate was shifted to a higher pH. Structure-function studies of cathepsin L were performed by constructing mutations in either the propeptide portion or the carboxyl-terminal light chain portion of the protein. These constructions were expressed in the E. coli system, and enzymatic activities were assayed following solubilization, renaturation, and gel filtration chromatography of the mutated proteins. Deletions of increasing size in the propeptide resulted in large proportional losses of activity, indicating that the propeptide is essential for proper enzyme folding and/or processing in this renaturation system. Deletion of part of the light chain containing a disulfide-forming cysteine residue or a single amino acid substitution of alanine for this cysteine residue resulted in almost complete loss of activity. These data suggest that the disulfide bond joining the heavy and light chains of cathepsin L is essential for enzymatic activity.  相似文献   

20.
Degradation of myofibrillar proteins by cathepsins B and D   总被引:4,自引:0,他引:4       下载免费PDF全文
1. The procedure of Barrett [(1973) Biochem. J.131, 809-822] for isolating cathepsins B and D from human liver was modified for use with rat liver and skeletal muscle. The purified enzymes appeared to be similar to those reported in other species. 2. Sephadex G-75 chromatography of concentrated muscle extract resolved two peaks of cathepsin B inhibitory activity, corresponding to molecular weights of 12500 and 62000. 3. The degradation of purified myofibrillar proteins by cathepsins B and D was clearly demonstrated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. After incubation with enzyme, the polypeptide bands representing the substrates decreased in intensity and lower molecular weight products appeared. 4. Cathepsins B and D, purified from either rat liver or skeletal muscle, were shown to degrade myosin, purified from either rabbit or rat muscle. Soluble denatured myosin was degraded more extensively than insoluble native myosin. Degradation by cathepsin B was inhibited by lack of reducing agent, or by myoglobin, iodoacetic acid and leupeptin, but not by pepstatin. The same potential modifiers were applied to cathepsin D, and only pepstatin produced inhibition. 5. Rat liver cathepsin B had a pH optimum of 5.2 on native rabbit myosin. The pH optimum of cathepsin D was 4.0, with a shoulder of activity about 1pH unit above the optimum. 6. Rat liver cathepsins B and D were demonstrated to degrade rabbit F-actin at pH5.0, and were inhibited by leupeptin and pepstain, respectively. 7. The degradation of myosin and actin by cathepsin D was more extensive than that by cathepsin B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号