首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Saccharomyces cerevisiae cyclic AMP-dependent protein kinase (A kinase) activity is essential for growth and cell cycle progression. Dependence on A kinase function can be partially relieved by the inactivation of a second kinase encoded by the gene YAK1. We have isolated two new genes, SOK1 and SOK2 (suppressor of kinase), as gene dosage suppressors of the conditional growth defect of several temperature-sensitive A kinase mutants. Overexpression of SOK1, like lesions in YAK1, also restores growth to a strain (tpk1 tpk2 tpk3) lacking all A kinase activity. The SOK1 gene is not essential, but a sok1::HIS3 disruption abrogates suppression of an A kinase defect by yak1. These results suggest that Yak1 and Sok1 define a linear pathway that is partially redundant with that of the A kinase. Activation of Sok1, by SOK1 overexpression or by inactivation of the negative regulator Yak1, renders a cell independent of A kinase function. The implications of such a model are particularly intriguing in light of the nuclear localization pattern of the overexpressed Sok1 protein and the primary sequence homology between SOK1 and a recently described, developmentally regulated mouse gene.  相似文献   

4.
It was proposed that Ato1p, Ato2p and Ato3p have a role in ammonia production by Saccharomyces cerevisiae colonies (Palkova et al., Mol Biol Cell 13: 3901-3914, 2002). In this study, we show that all three Ato proteins localise to the plasma membrane and their appearance correlates with the beginning of ammonia release. The expression of ATO genes is controlled by ammonia. All three Ato-GFP proteins associate with detergent-resistant membranes; two of them, Ato1p-GFP and Ato3p-GFP, localise to patches visible under the fluorescence microscope. In contrast with Ato3p-GFP which forms stable patches, the formation of those of Ato1p-GFP is pH dependent. Ato1p-GFP patches form at pH above 6 and they disappear at pH 5 or lower. Both changes, Ato1p-GFP clustering and patches spreading are reversible. The Ato1p-GFP spreading at low pH is independent on endocytosis. These data suggest that besides the ammonia induction of Ato protein synthesis, pH may rapidly regulate Ato1p function.  相似文献   

5.
6.
7.
Individual yeast colonies produce pulses of volatile ammonia separated by phases of medium acidification. Colonies of Saccharomyces cerevisiae mutant defective in the general amino acid permease, Gap1p, exhibit decreased ammonia production. Mutations in the S. cerevisiae amino acid sensor SPS completely abolish the colony ammonia pulses. In contrast, the ammonia pulse production is independent of external concentrations of ammonium and of its uptake by the ammonium permeases Mep1p, Mep2p, and Mep3p. It is concluded that in S. cerevisiae colonies, the extracellular amino acids, but not the extracellular ammonium, serve as a source for volatile ammonia production. These phenomena are not restricted to S. cerevisiae, since we observe that extracellular levels of 8 out of the 20 tested amino acids are necessary for ammonia pulses produced by Candida mogii colonies.  相似文献   

8.
Although colonies from Saccharomyces cerevisiae laboratory strains are smooth, those isolated from nature exhibit a structured fluffy pattern. Environmental scanning electron microscopy shows that the cells within wild fluffy colonies are connected by extracellular matrix (ECM) material. This material contains a protein of about 200 kDa unrelated to the flocculins, proteins involved in cell-cell adhesion in liquid media. The matrix material binds to concanavalin A. Within a few passages on rich agar medium, the wild strains switch from the fluffy to the smooth colony morphology. This domestication is accompanied by loss of the ECM and by extensive changes in gene expression as detected by DNA microarrays. The expression of about 320 genes was changed in smooth colonies. The major changes comprise carbohydrate metabolism, cell wall, water channels, Ty-transposons and subtelomeric genes, iron homeostasis, vitamin metabolism and cell cycle and polarity. The growth in fluffy colonies may represent a metabolic strategy for survival of yeast under unfavourable conditions that is switched off under felicitous laboratory conditions.  相似文献   

9.
Yeast cells growing on solid media organize themselves into multicellular structures, colonies, exhibiting patterns specific for particular yeast strains. With the aim of identifying genes involved in regulations of the colony formation, we applied a new approach enabling the extensive screening of Saccharomyces cerevisiae genes, the expression of which is changed during colony development. We used the library of S. cerevisiae DNA fragments inserted in front of the lacZ gene lacking its own promoter. Colonies of transformants with a blue/white patterned morphotype, implying that the expression of the lacZ gene from the inserted yeast promoter is switched on and off during the colony formation, were isolated. We identified several genes with variable expression during colony morphogenesis, including CCR4, PAM1, MEP3, ADE5,7 and CAT2. S. cerevisiae strain deleted in the CCR4 gene forms colonies with less organized morphology when compared with the isogenic parental strain. The synchronization of the expression patterns of some of the isolated genes in neighboring colonies was observed.  相似文献   

10.
Branched-chain amino acids (BCAAs) are key substrates in the formation of fusel alcohols, important flavour components in fermented foods. The first step in the catabolic BCAA degradation is a transaminase step, catalyzed by a branched-chain amino acid transaminase (BCAAT). Saccharomyces cerevisiae possesses a mitochondrial and a cytosolic BCAAT, Bat1p and Bat2p, respectively. In order to study the impact of the BCAATs on fusel alcohol production derived from the BCAA metabolism, S. cerevisiae BCAAT-deletion mutants were constructed. The BCAA l-leucine was exogenously supplied during cultivations with mutants of S. cerevisiae. BAT1 deletion is not essential for fusel alcohol production, neither under glucose nor under ethanol growth conditions. The 3-methyl-1-butanol production rate of bat1Delta-cells on ethanol was decreased in comparison with that of wild-type cells, but the cells were still able to produce 3-methyl-1-butanol. However, drastic effects in fusel alcohol production were obtained in cells lacking BAT2. Although the constructed bat2Delta-single deletion strain and the bat1Deltabat2Delta-double deletion strain were still able to produce 3-methyl-1-butanol when grown on glucose, they were incapable of producing any 3-methyl-1-butanol when ethanol was the sole carbon source available. In the circumstances used, gene expression analysis revealed a strong upregulation of BAT2 gene activity in the wild type, when cells grew on ethanol as carbon source. Apparently, the carbon metabolism is able to influence the expression of BCAATs and interferes with the nitrogen metabolism. Furthermore, analysis of gene expression profiles shows that the expression of genes coding for other transaminases present in S. cerevisiae was influenced by the deletion of one or both BCAATs. Several transaminases were upregulated when a BCAAT was deleted. Strikingly, none of the known transaminases was significantly upregulated when BAT2 was deleted. Therefore we conclude that the expression of BAT2 is essential for 3-methyl-1-butanol formation on the non-fermentable carbon source, ethanol.  相似文献   

11.
12.
13.
14.
On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the production of volatile ammonia acting as starvation signal between colonies. We present evidence that the three membrane proteins Ato1p, Ato2p, and Ato3p, members of the YaaH family, are involved in ammonia production in Saccharomyces cerevisiae colonies. The acid-to-alkali transition is connected with decrease of mitochondrial oxidative catabolism and by peroxisome activation, which in parallel with activation of biosynthetic pathways contribute to decrease the general stress level in colonies. These metabolic features characterize a novel survival strategy used by yeast under starvation conditions prevalent in nature.  相似文献   

15.
Protection against cadmium toxicity in yeast by alcohol dehydrogenase.   总被引:1,自引:0,他引:1  
A cDNA expression library from Schizosaccharomyces pombe was transformed into Saccharomyces cerevisiae to screen for genes capable of conferring cadmium resistance to S. cerevisiae cells. The cDNA library was cloned into the S. cerevisiae expression vector pDB20 which is designed to express cDNAs via the constitutively-expressed promoter of the gene for alcohol dehydrogenase I (ADH1). Terminator and polyadenylation signals are also provided by the ADH1 gene. Cadmium resistant colonies were shown to arise by a recombination event leading to the exchange of the S. pombe DNA with the chromosomal ADH1 gene and a consequent dramatic increase in the ADH1 gene expression due to the high copy number of the plasmid. The overexpression of ADH1 effectively buffered the cells for cadmium ions by formation of Cd-ADH.  相似文献   

16.
17.
18.
19.
20.
Enzymes scavenging reactive oxygen species (ROS) are important for cell protection during stress and aging. A deficiency in these enzymes leads to ROS imbalance, causing various disorders in many organisms, including yeast. In contrast to liquid cultures, where fitness of the yeast population depends on its ROS scavenging capability, the present study suggests that Saccharomyces cerevisiae cells growing in colonies capable of ammonia signaling use a broader protective strategy. Instead of maintaining high levels of antioxidant enzymes for ROS detoxification, colonies activate an alternative metabolism that prevents ROS production. Colonies of the strain deficient in cytosolic superoxide dismutase Sod1p thus developed the same way as wild type colonies. They produced comparable levels of ammonia and underwent similar developmental changes (expression of genes of alternative metabolism and center margin differentiation in ROS production, cell death occurrence, and activities of stress defense enzymes) and did not accumulate stress-resistant suppressants. An absence of cytosolic catalase Ctt1p, however, brought colonies developmental problems, which were even more prominent in the absence of mitochondrial Sod2p. sod2Δ and ctt1Δ colonies failed in ammonia production and sufficient activation of the alternative metabolism and were incapable of center margin differentiation, but they did not increase ROS levels. These new data indicate that colony disorders are not accompanied by ROS burst but could be a consequence of metabolic defects, which, however, could be elicited by imbalance in ROS produced in early developmental phases. Sod2p and homeostasis of ROS may participate in regulatory events leading to ammonia signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号