首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Microscopic epilithic algae in the River Itchen at Otterbourne near Southampton and in the Ober Water in the New Forest were studied during 1984 and 1985. The River Itchen rises from chalk springs and has a steady pH near 8.2 and a mean alkalinity of 236 mg HCO3 1–1; at the study site the river is about 16 m wide and 20 cm deep, with a mean flow rate of 0.33 m s–1 and a discharge ranging through the year between 0.34 and 2.46 m3 s–1. The Ober Water, which drains sands and gravels, has a pH between 6.9 and 7.2 and a mean alkalinity of about 50 mg HCO3 1–1; at the study site it is about 6 m wide, with a mean flow rate of 0.27 m s–1 and a discharge ranging through the year between 0.08 and 1.0 m3 s–1.Epilithic algae removed from the pebbles that form the major part of the beds of both streams show seasonal changes in abundance and composition. Diatoms peaked in April/May and dominate the epilithic flora in both streams, comprising 70–95% of all algal cells; highest numbers of chlorophytes occurred in summer and cyanophytes increased in autumn. The species composition of the epilithic flora in the two streams was different, as was the population density; algal cell numbers ranged between 500 and 7000 cells mm–2 of stream floor in the River Itchen and between 8 and 320 cells mm–2 of stream floor in the Ober Water. The chlorophyll a content of epilithic algae in the River Itchen ranged between 115 and 415 mg m–2 of stream floor, representing an annual mean biomass of about 8 g m–2, whereas in the Ober Water a chlorophyll a content of 2.2 to 44 mg m–2 of stream floor was found, representing an annual mean biomass of about 1 g m–2. Cautious estimates of the annual production of epilithic algae in these streams suggest a value of about 600 g organic dry weight m–2 in the River Itchen and about 75 g m–2 in the Ober Water.  相似文献   

3.
The abundance, generation time and production ofChironomus salinarius larvae in a lagoon fish-pond system in the Bay of Cádiz were studied by taking monthly samples at 3 sites during 1991 and 1992. Numerical abundance and biomass of larvae showed considerable spatial, seasonal and interannual variation (ANCOVAs,P<0.001). The maximum mean annual density was 7048 larvae m–2, and corresponded to a biomass of 3.08 g dry weight (DW) m–2. It was recorded at the site with the lowest rate of water renewal. Seasonal patterns were similar at all sites, with main annual peaks of abundance and biomass in autumn-early winter. Chironomid density was positively related to the biomass of benthic macroalgae (P<0.001). The population studied was multivoltine with a probable average of five generations per year, with overlapping cohorts and a predominance of third- and fourth-instar larvae. Estimates of annual production ranged between 72.2 g DW m–2 yr–1 at the site with the lowest rate of water renewal in 1991 and 0.1 g DW m–2 yr–1 at the site with the highest rate of water renewal in 1992. Mean annual production and the production/biomass ratio for the system was estimated to be 16.8 g DW m–2 yr–1 and 12.7, respectively. Possible factors leading to the observed density fluctuations are discussed, as well as possible sources of error in production estimates.  相似文献   

4.
Transport of coarse particulate organic matter in an Idaho river,USA   总被引:1,自引:1,他引:0  
Ted R. Angradi 《Hydrobiologia》1991,211(3):171-183
I investigated organic matter transport in the Henry's Fork of the Snake River, Idaho, USA, from August 1987 to November 1988. Mean discharge during the study was 15 m3 s–1. Screens were used to sample very coarse (> 6 mm) transported aquatic macrophyte material (VCTMM). Drift nets were used to sample coarse (1–6 mm) and fine (0.25–1 mm) transported particulate organic matter (CTOM and FTOM). Mean monthly concentration of VCTMM was 0.064 mg AFDWl–1 and was significantly higher than CTOM (0.024 mg AFDW l–1) and FTOM (0.036 mg AFDW l–1). VCTMM concentration was highest in December (0.163 mg AFDW l–1) and lowest in May (0.018 mg AFDW l–1). The sample position along a transect across the channel had a significant effect on the amount of transported organic matter collected in many months. The concentration of debris from individual species tracked the standing stock of that species during the growing season. In Fall, a dramatic increase in VCTMM corresponded to a decrease in macrophyte standing stock. FTOM and CTOM concentrations were highest in January (CTOM: 0.048; FTOM: 0.111 mg AFDW l–1), lowest in November 1988 (<0.006 mg AFDW l–1), were not correlated with discharge, and were inversely correlated with the standing stocks of macrophytes upstream, probably because macrophyte beds influenced the retentiveness of the channel. Standing stock of aquatic macrophytes was highest in September–October (5.2 kg wet weight m –2) and lowest in February (1.7 kg wet weight m–2). Annual movement of particulate organic matter past the sampling point was about 45 000 kg AFDW, of which 21 000 kg was VCTMM, 8 000 kg was CPOM, and 16 000 kg was FPOM.  相似文献   

5.
Dissolved organic carbon (DOC) dynamics were examined over five years (1989–1993) in Sycamore Creek, a Sonoran Desert stream, specifically focusing on DOC concentration in surface and hyporheic waters, and rates of export. In 1989 and 1990, the years of lowest stream discharge (0.08 and 0.04 m3 s–1 annual mean of daily discharge, respectively), DOC was high, averaging 7.37 and 6.22 mgC l–1 (weighted annual means). In contrast, from 1991 through 1993, a period of increased flow (1.1, 1.2 and 4.3 m3 s–1), concentration was significantly lower (P<0.001) with annual mean concentrations of 3.54, 3.49 and 3.39 mgC l–1. Concentration exhibited little spatial variation between two sampling stations located 6 km apart along the mainstem or between surface and hyporheic waters. Annual export of DOC from Sycamore Creek varied 100-fold over the five-year period from a mean rate of only 24 kgC d–1 in 1990 to 2100 kgC d–1 in 1993. Ninety percent of DOC was exported by flows greater than 2.8 m3 s–1, and 50% during flows greater than 27 m3 s–1; flows of 2.8 and 24 m3 s–1 occurred only 9 and 1% of the time. The export of organic matter in Sycamore Creek appears to be coupled to El Niño-Southern Oscillation phenomena. The years of highest export, 1991–1993, had El Niño conditions while 1989 and 1990 had medial conditions.  相似文献   

6.
Thiéry  Alain  Puente  Ludovic 《Hydrobiologia》2002,486(1):191-200
Physical and chemical variables, anostracan populations (Artemia parthenogenetica and Branchinella spinosa) and other biota were studied during 1996–1997 in a Camargue saltern (max. depth 1 m). The taxonomic composition and density of macroinvertebrates were investigated twice monthly, based on benthic substrate and water column samples. Fauna was composed of three groups in terms of numerical importance. The benthic macroinvertebrates were represented only by nematodes (< 50 ind. m–2 to > 500 ind. m–2 in November–December and May respectively). The zooplankton was dominated by crustaceans, one cladoceran, Moina salina (ranging from 670 to 2350 ind. m–2 in spring), two anostracans, Artemia parthenogenetica (< 50 ind. m–2 in autumn), and Branchinella spinosa (max. 190 ind. m–2 in December to absent in April), and two copepods, Cletocamptus retrogressus (max. density 2000 ind. m–2 in November), and Eurytemora velox (max. density 650 ind. m–2 in February–March). Insects (Chironomidae, Culicidae) were rare, with mean densities < 1 ind. m–2. The phenology of each crustacean population is discussed in relation to physical and chemical water variables. Salinity appeared to be of greatest importance regulating the population abundance.  相似文献   

7.
Chironomus piger larvae are widespread in small rivers and canals strongly polluted with domestic sewage. Despite this, almost nothing is known concerning the biology of the species under natural conditions and its role in the process of river self-purification. For two years, benthic samples were collected in the Sestra River at a site about 250 m downstream of the effluent discharge drains of a sewage treatment installation where the greatest concentrations of the larvae occurred. The number and biomass ofC. piger larvae were subject to marked fluctuations,viz. 96,000–348,000 ind m–2 and 420–1,800 g m–2. 460 degreedays (on average) was required for development of one generation.C. piger has 5 or 6 generations per year depending on the hydrometeorological conditions during the growing season.C. piger larvae play an important role in self-purification of the river. They utilize precipitating seston for food and for building their dwelling tubes. According to our calculations the amount of organic matter assimilated in the area of maximum larval concentration ranged 80–177 g wet weight m–2 day–1, and 32–71 g wet weight m–2day–1 was mineralized.  相似文献   

8.
We investigated how leaf gas exchange and hydraulic properties acclimate to increasing evaporative demand in mature beech trees, Fagus crenata Blume and Fagus japonica Maxim., growing in their natural habitat. The measurements in the top canopy leaves were conducted using a 16-m-high scaffolding tower over two growing seasons. The daily maxima of net photosynthetic rate for the early growing season were close to the annual maximum value (11.9 mol m–2 s–1 in F. crenata and 7.7 mol m–2 s–1 in F. japonica). The daily maxima of water vapor stomatal conductance were highest in the summer, approximately 0.3 mol m–2 s–1 in F. crenata and 0.15 mol m–2 s–1 in F. japonica. From the early growing season to the summer season, the leaf-to-air vapor pressure deficit increased and the daily minima of leaf water potentials decreased. However, there was no loss of leaf turgor in the summer as a result of effective osmotic adjustment. Both the soil-to-leaf hydraulic conductance per unit leaf area and the twig hydraulic conductivity simultaneously increased in the summer, probably as a result of production of new vessels in the xylem. These results suggest that both osmotic adjustment and increased hydraulic conductance resulted in the largest diurnal maximum of stomatal conductance in the summer, resulting in the lowest relative stomatal limitation on net photosynthetic rate, although the leaf-to-air vapor pressure deficit was highest. These results indicate that even in a mesic forest, in which excessive hydraulic stress does not occur, the seasonal acclimation of hydraulic properties at both the single leaf and whole plant levels are important for plant carbon gain.  相似文献   

9.
The effects of Nereis sp. on the flux of dissolved phosphate across the sediment-water interface has been studied in Palmones River estuary using benthic flux-chambers and intact cores. Diffusive fluxes of phosphate were calculated from pore water gradient concentration and compared with those obtained from benthic chambers experiments. The high abundance of Nereis in the upper sediment layers appears to play an important part in the dissolved oxygen profiles in the overlying water, but had no effect on the redox potential. A negative relationship was found between the Nereis abundance and the phosphate gradient; this gradient ranged between 40 µmol 1–1 cm–1 with 340 Nereis individuals m–2 and 20 µmol 1–1 cm–1 with 900 Nereis individuals m–2. The ratio of the in situ flux to the flux gradient concentration for dissolved phosphate increased with the abundance of Nereis (from 1.7 at low abundance to 5.8 at high abundance).  相似文献   

10.
Macroinvertebrate drift in a Rocky Mountain stream   总被引:5,自引:4,他引:1  
J. David Allan 《Hydrobiologia》1987,144(3):261-268
An extensive series of drift collections from a Rocky Mountain stream was used to investigate quantitative patterns in the taxonomic composition of drift throughout spring, summer and fall for 1975–1978. Drift was estimated by drift rate, the number of organisms drifting past a point per 24 h; and by drift density, the numbers of organisms collected per 100 m3 of water sampled.Drift densities were up to ten times greater by night than by day, and 24 h drift densities for the total fauna approached 2000 per 100 m3 in June–July, declining to <500 by autumn. Ephemeroptera, and especially Baetis, dominated the drift. Drift rates were greatest in late spring, around 106 per 24 h, which are among the highest values reported for small trout streams. Drift rates declined to <105 during the summer, and shifts in the taxonomic composition are described.Multiple regression analysis of the relationship between drift rate and density, and the independent variables discharge, benthic density and temperature, showed that discharge typically was a significant predictor of 24 h drift rate, usually the best single predictor. In contrast, 24 h drift density most frequently was independent of discharge, indicating that this measure tends to correct for seasonal variation in discharge, as suggested in the literature. However, this was not invariably true. Drift density significantly correlated with benthic density in five of eight taxa inspected, thus seasonal declines in the benthos probably accounted for parallel declines in drift density.  相似文献   

11.
Studies of the composition and abundance of algae suspended in the water of the River Derwent, Derbyshire, were made during 1983. Samples were collected at intervals of 2–3 weeks from 6 sites on the lower reaches of the river. Variations in both composition and abundance of suspended algae occurred with variations in flow. At the uppermost sites cell densities were generally low (<500 cells ml–1) and the algae consisted mainly of dislodged benthic diatoms. The density in suspension of these algae of benthic origin increased with flow. At downstream sites a true potamoplankton developed; during the summer this consisted chiefly of centric diatoms with Chlorophyta and Cryptophyta. Even at the lowermost site, the maximum recorded density of cells (3 860 cells ml–1) and cell load (30 × 109 cells s–1) were lower in the Derwent than in some other British rivers. However, the cell density could still represent a substantial part (up to 32%) of the total particle density in the river.  相似文献   

12.
The epiphytic algae on surfaces of the macrophyte Ranunculus penicillatus (Dumort.) Bab. var. calcareus (R. W. Butcher) C. D. K. Cook and on Cladophora glomerata (L.) Kütz growing in the River Itchen at Otterbourne near Southampton were studied between February 1984 and June 1985. The river at this site has a mean flow rate of 0.33 m s–1, and is about 16 m wide and on average 20 cm deep, with a discharge ranging through the year between 0.34 and 2.46 m3 s–1. The pH of the river varies little around 8.2, with a mean alkalinity of 236 mg HCO inf3 sup1 l–1, because of its origin from chalk springs. Ranunculus grows throughout the year, with peaks of biomass in spring and autumn. It forms a very large surface for attachment of epiphytes, and covers on average 40% of the stream bed. Numbers of epiphyte cells removed from Ranunculus ranged through the year between 52 × 103 and 271 × 103 cells mm–2 stream floor, with maximum numbers in April, and a secondary peak in October. This pattern partly reflects fluctuations in the biomass of Ranunculus; the number of cells per unit area of plant surface showed a broader spring peak and lower fluctuations in other seasons. Diatoms formed 65 to 98% of these epiphyte cells, with chlorophytes reaching their peak (10%) in summer and cyanophytes (25%) in autumn. Estimates of biomass of these epiphytic forms, derived from measurements of chlorophyll c, indicate a range between 30 and 100 g dry weight m–2 of weed bed. Colonisation studies showed that the algae grow and reproduce throughout the year, with a mean generation time of about 5 days, suggesting an annual production of about 3 kg dry weight m–2 of weed bed, which makes epiphytic algae the principal primary producers in the stream. The numbers and biomass of epiphytic algae on Cladophora are considerably less.The species of epiphytic algae found on Ranunculus were generally similar to those growing on Cladophora, and to epilithic algae on pebbles of the stream bed, but different species were dominant on the different substrata. Algal cells in the water column were all derived from benthic habitats, although their relative abundance was very different.  相似文献   

13.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

14.
AxenicTrentepohlia odorata was cultured at three different NH4Cl levels (3.5 × 10–2, 3.5 × 10–3, 3.5 × 10–4 M) and three different light intensities (48, 76, 122 µmol m–2 s–1). Chloride had no effect on growth over this range of concentration. High light intensity and high NH4Cl concentration enhanced the specific growth rate. The carotenoid content increased under a combination of high light intensity and low N concentration. WhenD. bardawil was exposed to the same combination of growth conditions, there was an increase in its carotenoid content. The light saturation and the light inhibition constants (K s andK i, respectively) for growth, and the saturation constant (K m) for NH4Cl were determined. TheK s andK i values were higher inT. odorata (66.7 and> 122 mol m–2 s–1, respectively) than inD. bardawil (5.1 and 14.7 µmol m–2 s–1, respectively). TheK m value determined at 122 µmol m–2 s–1, however, was lower inT. odorata (0.048 µM) than inD. bardawil (0.062 µM).Author for correspondence  相似文献   

15.
Paul C. Marsh 《Hydrobiologia》1985,124(2):103-110
Asiatic clam, Corbicula fluminea, is often a serious pest where introduced and established outside its native range. This includes many canals of the southwestern U.S.A. Because of its potential role in organic matter processing, nutrient dynamics, and sedimentation, the clam is an important component of the benthic community and of the aquatic ecosystems which it inhabits. To better understand the ecology of Corbicula in canals, secondary production and life history of an introduced population of clams in a small, earthen canal in the Phoenix metropolitan area, central Arizona, were studied over a 12-month period in 1981–1982. Clams had a monthly mean density of 2 255 m–2, single annual spawning, 2 year life span, and overlapping cohorts. Annual secondary production (size-frequency method) was 25.62 g DM m–2 and cohort production (composite Allen curve) was 29.32 g DM m–2, with turnover ratios of 2.70 and 5.81, respectively. These are among the highest known single-species estimates for molluscs, and illustrate the importance of clams in these unique southwestern aquatic systems.  相似文献   

16.
Four physiologically and phenotypically diversified tobacco (Nicotiana tabacum L. cv. Samsun) plantlet variants had been generated by cultivation on media either lacking or containing sucrose (0 and 3 %, m/v) under two different photon flux densities (PFD), 50 µmol m–2 s–1 (LL) and 200 µmol m–2 s–1 (HL). Plantlets were transferred into soil without any pre-acclimation and grown either under PFD of 200 µmol m–2 s–1 or 700 µmol m–2 s–1. Sucrose feeding in vitro resulted in reduced degree and duration of wilting after transfer. The highest readiness for ex vitro acclimation was found in 3 % HL plants, in which changes of photosynthetic apparatus and stress responses were the smallest. On the contrary, the steepest decline of Fv/Fm ratio on the first day after transplantation, doubled chlorophyll content and almost tripled D1/LHC 2 ratio after 7 d of ex vitro growth under 700 µmol m–2 s–1 characterized 0 % HL plants, which had suffered chronic photoinhibition in vitro. Remarkably high abscisic acid content at the end of in vitro cultivation and during acclimation as well as increased synthesis of both D1 and LHC 2 proteins even at the end of analyzed acclimation period were found only in 0 % LL plants. Increase of D1/LHC 2 ratio and chlorophyll contents demonstrate that in vitro developed leaves of all plant variants are able to acclimate to new environment. The most surprising result in the whole study is the drop of D1 protein synthesis in all plants on the 3rd day. Five times decline of photoprotection level of xanthophylls in plants after ex vitro transfer into the same PFD showed stress character of in vitro cultures.  相似文献   

17.
Changes in benthic community composition in response to reservoir aging   总被引:2,自引:2,他引:0  
The effects of reservoir aging on the benthic macroinvertebrate community in Pawnee Reservoir were documented by comparing species composition and biomass of samples collected from October 1991 through September 1992, to a similar survey conducted in 1968–70 by Hergenrader & Lessig (1980). Filling of the basin with sediment and associated material and the subsequent change in the benthic environment, has resulted in a relatively homogenous bottom substrate at each of the three sampling transects (dam, middle, and inflow). Sediment enrichment has limited the benthic fauna to species tolerant of brief periods of bottom anoxia and increased levels of organic matter, which has resulted in the disappearance of many taxa and a decrease in the abundance of remaining invertebrates. Significant differences in total biomass were found at each transect, as well as for the whole lake, between study periods. The dam, middle, inflow and total biomasses for the 1968–70 study period were 2.4, 1.5, 2.3 and 2.0 g m–2, respectively, compared to 0.2, 0.2, 0.3, and 0.2 g m–2 for the 1991–92 study period. The total disappearance of eight invertebrate taxa, in particular two sphaerid clam species, and significant declines in other dominant taxa such as Chaoborus punctipennis and Chironomus sp. accounted for these major differences in biomass between study periods. Reductions in the number of taxa present has resulted in an increase in benthic faunal similarity at each transect, with tubificid oligochaetes, Coelotanypus sp., C. punctipennis, and Chironomus sp., comprising 90% of both the total density and biomass of benthic invertebrates in Pawnee Reservoir.  相似文献   

18.
The development of wetland soil characteristics andbenthic invertebrate communities were evaluated increated Spartina alterniflorasalt marshes inNorth Carolina ranging in age from 1 to 25 years-old.A combination of measurements from different-agecreated marshes as well as periodic measurements overtime on two marshes were used to (1) document rates ofwetland pedogenesis, especially soil organic matter,and, (2) explore relationships between soil andbenthic invertebrate community development. Soilmacro-organic matter (MOM, the living and dead rootand rhizome mat), organic C and N increased and bulkdensity decreased during the 25 years following marshestablishment. The most dramatic changes in bulkdensity, MOM, C and N occurred within the upper 10 cmof the soil with lesser changes below this depth.Created marshes were sinks for organic C (90–140g·m-2·yr-1) and N (7–11g·m-2·yr-1) but not for P (0–1g·m-2·yr-1). The density of benthicinvertebrates (>250 m) and subsurface-depositfeeding oligochaetes also increased over time oncreated salt marshes. Invertebrate and oligochaetedensity were strongly related to MOM content(r2= 0.83–0.87) and soil organic C(r2= 0.52–0.82) and N (r2= 0.62–0.84). Thesefindings suggest that, in created salt marshes,development of the benthic invertebrate community istied to marsh soil formation, especially accumulationof organic matter as MOM and soil. Field studies thatmanipulate the quantity and quality of soil organicmatter are needed to elucidate the relationshipbetween salt marsh pedogenesis and benthicinvertebrate community development.  相似文献   

19.
Takeda  Alice M.  Stevaux  José C.  Fujita  Daniele S. 《Hydrobiologia》2001,463(1-3):241-248
A cross-section of the upper Paraná was studied in order to evaluate which hydraulic, sedimentary and water variables influenced on the spatial – temporal distribution and abundance of the Narapa bonettoi Righi & Varela, 1983 population. From June 1993 to February 1995, data on discharge, channel morphology, flow velocity, sediment suspended concentration and depth, water variables and benthic community were obtained. Data were analyzed by principal component analysis – PCA. The highest density of N. bonettoi occurred at the site with coarser sediments and stable bottom morphology. The lowest density was recorded at the site that presented less stable channel morphology. Temporal variation is controlled by hydrological regime and N. bonettoi cycle life whereas spatial distribution is tightly associated with channel stability.  相似文献   

20.
The object of this work was to determine, using a full-factorial experiment, the influence of temperature, irradiance and salinity on growth and hepatotoxin production by Nodularia spumigena, isolated from Lake Alexandrina in the south-east of South Australia. Higher levels of biomass (determined as particulate organic carbon, POC), toxin production and intracellular toxin concentration per mg POC were produced under light limited conditions (30 mol m–2 s–1) and at salinities equal to or greater than those experienced in Lake Alexandrina. Both highest biomass and total toxin production rates were recorded at temperatures equal to or greater than those of the lake (20 and 30°C). The temperature at which maximum biomass and toxin production was recorded decreased from 30°C for cultures grown at 30 mol m–2 s–1 to 20°C when grown at 80 mol m–2 s–1. In contrast, intracellular toxin per mg POC was highest at the lowest growth temperature, 10°C, at both 30 and 80 mol m–2 s–1. It appears that the optimum temperature for biosynthetic pathways used in the production of toxin is lower than the optimum temperature for those pathways associated with growth. Intracellular toxin levels were higher in cells cultured at 10°C/30 mol m–2 s–1 whereas the majority of the toxin was extracellular in cells grown at 30°C/30 mol m–2 s–1. This implies that the highest concentration of toxin in lake water would occur under high temperature and high irradiance conditions. Individual environmental parameters of salinity, irradiance and temperature were all shown to influence growth and toxin production. Notwithstanding, the overall influence of these three parameters on toxin production was mediated through their effect upon growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号