首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of adipocyte adenylate cyclase by protein kinase C   总被引:5,自引:0,他引:5  
Adenylate cyclase activity in purified rat adipocyte membranes is stimulated by the calcium- and phospholipid-dependent enzyme protein kinase C. Over the concentration range of 100-1000 milliunits/ml, both highly purified (approximately 3000 units/mg of protein) protein kinase C from rat brain and partially purified (14 units/mg of protein) protein kinase C from guinea pig pancreas stimulate cyclase activity. The actions of both protein kinase C preparations on adenylate cyclase activity are dependent on added calcium, which is effective at concentrations less than 10 microM. Exogenous phospholipids are not required for stimulation of adenylate cyclase by protein kinase C; but, under typical cyclase assay conditions, the adipocyte membranes satisfy the lipid requirement for protein kinase C phosphorylation of histone. The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate enhances the kinase action on cyclase, and the phorbol ester is effective at concentrations equimolar with the kinase (less than 10 nM). With the brain protein kinase C, 12-O-tetradecanoylphorbol-13-acetate effects are especially evident at limiting calcium concentrations. Inhibitors of protein kinase C activity, such as chlorpromazine, palmitoylcarnitine, and polymyxin B, inhibit selectively that adenylate cyclase activity which is stimulated by protein kinase C plus calcium. It is concluded that protein kinase C acts directly on the adipocyte adenylate cyclase system.  相似文献   

2.
Modulation of adenylate cyclase in human keratinocytes by protein kinase C   总被引:3,自引:0,他引:3  
Adenylate cyclase (ATP-pyrophosphate lyase (cyclizing); EC 4.6.1.1) in the human keratinocyte cell line SCC 12F was potentiated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), phorbol-12,13-diacetate, and 1,2-dioctanoylglycerol. Keratinocytes exposed to TPA showed a 2-fold enhancement of adenylate cyclase activity when assayed in the presence of isoproterenol or GTP. The half-maximal effective concentration (EC50) for both isoproterenol and GTP were unaltered by TPA treatment of the cells. Basal adenylate cyclase activity in membranes from TPA-treated cultures was also increased 2-fold relative to activity in control membranes. Potentiation of adenylate cyclase activity was dependent on the concentration of TPA to which the keratinocytes were exposed (EC50 for TPA = 3 nM). TPA actions on adenylate cyclase were maximal after 15 min of incubation of the cells with the compound, correlating well with the time course of translocation of protein kinase C (Ca2+/phospholipid-dependent enzyme) from cytosol to membrane. The action of cholera toxin on adenylate cyclase was additive with TPA. In contrast, pertussis toxin actions on adenylate cyclase were not additive with TPA. Treatment of control cells with pertussis toxin activated adenylate cyclase 1.5-fold, whereas cells exposed to pertussis toxin for 6 h followed by TPA for 15 min showed the same 2-fold increase in adenylate cyclase activity as observed in membranes from cells exposed to TPA without prior exposure to pertussis toxin. Pertussis toxin catalyzed ADP-ribosylation was increased 2-fold in membranes from SCC 12F cells exposed to TPA, indicating an increase in the alpha beta gamma form of Gi. These data suggest that exposure of human keratinocytes to phorbol esters increases adenylate cyclase activity by a protein kinase C-mediated increase in the heterotrimeric alpha beta gamma form of Gi resulting in decreased inhibition of basal adenylate cyclase activity.  相似文献   

3.
Protein kinase C sensitizes olfactory adenylate cyclase   总被引:2,自引:1,他引:2  
Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory sensitivity.  相似文献   

4.
Intact human parathyroid hormone, hPTH [1-84], and the hPTH [1-34] fragment stimulated membrane-associated protein kinase C (PKC) activity in immortalized (but still differentiation-competent) murine BALB/MK-2 skin keratinocytes. Unexpectedly, the hormone and its fragment did not stimulate adenylate cyclase. The failure of PTH to stimulate adenylate cyclase activity was not due to the lack of a functioning receptor-cyclase coupling mechanism because the cells were stimulated to synthesize cyclic adenosine monophosphate (cyclic AMP) by the beta-adrenergic drug isoproterenol. Thus, skin keratinocytes seem to have an unconventional PTH receptor that is coupled to a PKC-activating mechanism but not to adenylate cyclase. These observations suggest that normal and neoplastic skin keratinocytes respond to the PTH-related peptide that they make and secrete.  相似文献   

5.
Antibodies to surface immunoglobulins activate inositol phospholipid hydrolysis in B-lymphocytes, but very little is known concerning their effects on cAMP levels. In other cells, products from the hydrolysis of phosphatidylinositol 4,5-bisphosphate can increase and/or potentiate cAMP accumulation. In this study we have examined whether goat anti-mouse IgM (mu-chain-specific) stimulates and/or potentiates increases in the cAMP levels of splenocytes from athymic nude mice. Goat anti-mouse IgM, by itself, stimulated a 60% increase in cAMP within 2 min. Pretreating the cell suspensions at 37 degrees C with anti-IgM produced opposite effects on the forskolin- and prostaglandin E1 (PGE1)-induced increase in cAMP. Anti-IgM (25 micrograms/ml) potentiated the rise in cAMP induced by 100 microM forskolin 76%, but it decreased the response to 50 nM PGE1 by 30%. Direct activation of protein kinase C (Ca2+/phospholipid-dependent enzyme) by 12-O-tetradecanoylphorbol 13-acetate and/or sn-1,2-dioctanoylglycerol resulted in a similar pattern of responses. A 3-min preincubation with 97 nM 12-O-tetradecanoylphorbol 13-acetate potentiated the forskolin-induced response from 1.7 +/- 0.1 to 4.3 +/- 0.6 pmol of cAMP/10(6) cells but reduced the PGE1 response from 0.98 +/- 0.06 to 0.51 +/- 0.03 pmol of cAMP/10(6) cells. Similarly, preincubating the cells for 3 min with 5 microM sn-1,2-dioctanoylglycerol increased the forskolin response from 1.7 +/- 0.1 to 5.1 +/- 0.2 pmol of cAMP/10(6) cells but reduced the response to PGE1 from 1.15 +/- 0.03 to 0.75 +/- 0.04 pmol of cAMP/10(6) cells. Thus, activation of protein kinase C by hydrolysis products of inositol phospholipids, 12-O-tetradecanoylphorbol 13-acetate, or exogenous diacylglycerols modified adenylate cyclase itself and sites upstream of adenylate cyclase such as the receptor or G proteins coupling the receptor to the cyclase. Furthermore, modification of the PGE1 response by anti-IgM provides a mechanism by which antigen can differentially regulate T- and B-cells responding to macrophage-produced prostaglandins during an immune response.  相似文献   

6.
The influence of protein kinase C (PKC) activation on cyclic AMP production in GH3 cells has been studied. The stimulation of cyclic AMP accumulation induced by forskolin and cholera toxin was potentiated by 4 beta-phorbol 12,13-dibutyrate (PDBu). Moreover, PDBu, which causes attenuation of the maximal response to vasoactive intestinal polypeptide (VIP), also induced a small right shift in the dose-response curve for VIP-induced cyclic AMP accumulation. PDBu-stimulated cyclic AMP accumulation was unaffected by pretreatment of cells with pertussis toxin or the inhibitory muscarinic agonist, oxotremorine. PDBu stimulation of adenylate cyclase activity required the presence of a cytosolic factor which appeared to translocate to the plasma membrane in response to the phorbol ester. The diacylglycerol-generating agents thyroliberin, bombesin and bacterial phospholipase C each stimulated cyclic AMP accumulation, but, unlike PDBu, did not attenuate the stimulation induced by VIP. These results suggest that PKC affects at least two components of the adenylate cyclase complex. Stimulation of cyclic AMP accumulation is probably due to modification of the catalytic subunit, whereas attenuation of VIP-stimulated cyclic AMP accumulation appears to be due to the phosphorylation of a different site, which may be the VIP receptor.  相似文献   

7.
The role of oxidation of SH groups in the activity of adenylate cyclase and in radiosensitivity of the enzyme was investigated. Adenylate cyclase activity was measured in purified membrane preparation of 19 day old chicken embryo brains. N-ethyl-maleimide (NEM) and lead-acetate were used as SH inhibitors. Gamma irradiation was carried out with 60-Co source. NEM inhibition of adenylate cyclase was dose dependent and 50 per cent inhibition was observed at 40-50 microM NEM. Activity of adenylate cyclase was elevated at lower concentrations of lead-acetate (10 nM-100 microM) and was inhibited at higher concentrations (above 100 microM). The presence of 40 microM NEM did not alter the shape of lead acetate saturation curve of adenylate cyclase. Gamma irradiation in the dose range of 100-800 Gy elevated the adenylate cyclase activity measured in the presence of 5 mM NaF but did not alter the basal activity. Gamma irradiation did not have significant effect on NEM saturation of adenylate cyclase, while it altered slightly the lead acetate saturation curve.  相似文献   

8.
Certain lysophospholipids, lysophosphatidylcholine (lyso-PC) in particular, stimulated protein kinase C at low concentrations (less than 20 microM) but, conversely, inhibited it at high concentrations (greater than 30 microM). Protein kinase C stimulation by lyso-PC required the presence of phosphatidylserine (PS) and Ca2+ and was associated with a decreased Ka for PS and increased Ka for Ca2+ of the enzyme. Cardiolipin and phosphatidic acid could partially substitute for PS in supporting the stimulatory effect of lyso-PC. Lyso-PC also biphasically regulated protein kinase C activated by diolein. Of several synthetic lyso-PC preparations tested, the oleoyl, myristoyl and palmitoyl derivatives were most active. Data from the Triton X-100 mixed micellar assay indicated that 1.4 and 14.0 mol of lyso-PC/micelle produced a maximal stimulation and a complete abolishment of the stimulation of protein kinase C, respectively. Protein kinase C stimulation by lyso-PC, with a pH optimum of about 7.5, was observed for phosphorylation of histone H1, myelin basic protein, and the 35- and 47-kDa proteins from the rat brain, but not for that of other histone subfractions and protamine. Lyso-PC acted synergistically with diacylglycerol in stimulating protein kinase C, whereas the stimulation by lyso-PC was additive to that by oleic acid. Protein kinase C inhibitors (alkyllysophospholipid, sphingosine, tamoxifen, and polymyxin B) inhibited more potently the protein kinase C activity stimulated by PS/Ca2+/lyso-PC than that stimulated by PS/Ca2+. The stimulatory and inhibitory effects of lyso-PC were not observed for myosin light chain kinase and cAMP-dependent protein kinase, indicating a specificity of its actions. The present findings suggested that lyso-PC, likely derived from membrane PC by the action of phospholipase A2, might play a role in signal transduction via a dual regulation of protein kinase C, and that it could further modulate the enzyme and hence the cellular activity by interplaying with diacylglycerol and unsaturated fatty acid, the two other classes of cellular mediators also shown to be activators of protein kinase C.  相似文献   

9.
The circular dichroism and thermal denaturation properties of chromatin isolated from duck erythrocytes have been carefully examined as has the chromatography of sonicated erythrocyte chromatin on ECTHAM-cellulose. The circular dichroism spectrum and thermal denaturation profile resemble much more closely those of chromatin from liver than has been previously reported by other workers. The chromatography of erythrocyte chromatin on ECTHAM-cellulose gave results that differ dramatically from those obtained from chromatography of f1-containing chromatins on this weak anion exchanger, in that no variations in histone content, circular dichroism spectra or thermal denaturation profiles were observed in the eluted material. Coupled with our earlier finding of no variation in relative content of individual histones (Reeck, G. R. et al. (1974) Eur. J. Biochem. 49, 407–414), we interpret the results of ECTHAM-cellulose chromatography of erythrocyte chromatin to indicate that f2c-depleted regions analogous to the f1-depleted regions found in f1-containing chromatins do not exist in duck erythrocyte chromatin.  相似文献   

10.
R A Cohen  P Cuatrecasas 《Life sciences》1976,19(10):1537-1542
Stimulation of adenylate cyclase activity occurs in membranes prepared from toad erythrocytes preincubated briefly (at 37° or 4°) with ultraviolet light-inactivated Sendai virus. Stimulation occurs with as few as five virions per cell, and it is blocked by pretreating the virus with the membrane glycolipid, ganglioside GM1. Virus treatment also alters modulation of adenylate cyclase by hormones, nucleotides and sodium fluoride. Interactions of viral envelope antigens with plasma membrane components may thus elicit functional changes possibly important in the pathogenesis of viral infections.  相似文献   

11.
Osteoclasts, isolated from the endosteum of 2.5- to 3-week-old chickens, were treated with acridine orange, a hydrogen ion concentration-sensitive fluorescent dye, in order to monitor changes in acid production. The adenylate cyclase inhibitor, alloxan, blocked parathyroid hormone (PTH)-stimulated acid production. Dibutyryl cyclic adenosine monophosphate, a membrane-permeant form of cyclic adenosine monophosphate, mimicked the PTH effect. Bisindolylmaleimide, a specific inhibitor of protein kinase C (PKC), blocked the initial stimulation (15, 30, and 60 min) of acid production by PTH but had no effect on long-term stimulation (120 min). Confocal microscopy of osteoclasts stained with fluorescein-conjugated bisindolylmaleimide revealed a shift in location of PKC from the cytoplasm to the plasma membrane region after treatment with parathyroid hormone. The results of these studies support the hypothesis that PTH regulation of acid production in osteoclasts involves both adenylate cyclase and PKC as effectors. J. Cell. Biochem. 65:565–573. © 1997 Wiley-Liss Inc.  相似文献   

12.
Continuous exposure of rat glioma C6 cells to 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in a time and dose dependent loss of [3H]phorbol dibutyrate binding sites and protein kinase C activity. Thus, by 24 h, the cells were essentially depleted of protein kinase C activity. In agreement with previous studies, TPA treatment caused a reduction in isoproterenol-stimulated adenylate cyclase activity and a sequestration of beta-adrenergic receptors. Cells were treated with TPA for 24-48 h to completely down-regulate protein kinase C and then exposed to isoproterenol. Agonist-mediated desensitization of adenylate cyclase and sequestration of beta-adrenergic receptors occurred at similar rates in control and TPA-treated cells. In addition, agonist-mediated down-regulation of beta-adrenergic receptors was not impaired by the absence of protein kinase C activity. Although both agonists and phorbol esters cause desensitization of the beta-adrenergic receptor-coupled adenylate cyclase, agonist-mediated events can occur independently of protein kinase C.  相似文献   

13.
The murine Leydig tumor cell line, MLTC-1, contains a gonadotropin receptor-coupled adenylate cyclase. Although the binding of human choriogonadotropin (hCG) initially causes cells to accumulate cAMP, in time, the response to hCG is attenuated by desensitization. Treating intact cells with the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), or with diacylglycerol also causes desensitization of the hCG response. These compounds are activators of calcium/phospholipid-dependent protein kinase (PKC). Treating MLTC-1 cells with TPA or dioctanoylglycerol increased the portion of PKC in the cell membrane fraction. This phenomenon is associated with activation of PKC. Treating isolated membranes with purified PKC desensitize the hCG response. Thus, desensitization caused by TPA or dioctanoylglycerol is probably mediated by PKC. PKC is normally activated when phosphoinositides are metabolized to diacylglycerol and inositol phosphates. There was no significant accumulation of inositol phosphates when cells were treated with hCG. hCG did not increase the portion of PKC in the cell membrane fraction. However, hCG could desensitize isolated membranes, but TPA could not. We conclude that although protein kinase C activity can desensitize the gonadotropin response, hCG does not cause desensitization by activating PKC. The implications of this observation are discussed.  相似文献   

14.
Addition of phorbol ester-activated, partially purified protein kinase C to membranes of human platelets had no effect on forskolin stimulation of the adenylate cyclase and increased stimulation by prostaglandin E1 only at high GTP concentrations by preventing inhibition by GTP. Hormonal inhibition of the platelet adenylate cyclase by epinephrine was eliminated or largely impaired. At low GTP concentrations, epinephrine even caused a small increase in cyclase activity. The data suggest that activated protein kinase C interferes with GTP- and hormone-induced adenylate cyclase inhibition probably by phosphorylating the inhibitory guanine nucleotide-binding regulatory component Ni.  相似文献   

15.
16.
The protein kinase C stimulator TPA (12-O-tetradecanoyl phorbol-13-acetate) enhanced the responsiveness of adenylate cyclase to IPR (isoproterenol) and PGE1 (prostaglandin E1) in quiescent tsKSV-NRK cells at the nonpermissive 41 degrees C. Reactivating the thermolabile mitogenic/oncogenic K-ras protein in tsKSV-NRK cells by dropping the temperature to 36 degrees C also enhanced the responsiveness of adenylate cyclase to IPR and PGE1. The enhancement was transient and peaked at 6 hours after the temperature shift. This enhanced responsiveness was specifically due to the reactivated viral K-ras protein rather than the temperature shift because the same temperature shift did not affect adenylate cyclase responsiveness in uninfected NRK cells, nor was it a result of the mitogenic stimulus since reacting the mitogenic pp60v-src protein in tsASV-NRK cells did not affect adenylate cyclase responsiveness. The increased responsiveness of adenylate cyclase at 6 hours after the temperature shift was not a result of elevated membrane-associated PKC activity. However, the reactivated viral K-ras protein strongly increased the stimulability of membrane-associated PKC by TPA and it further increased TPA's ability to enhance the responsiveness of adenylate cyclase to IPR and PGE1. Thus, a viral K-ras protein and membrane-associated protein kinase C can cooperate to increase the responsiveness of adenylate cyclase to agonists.  相似文献   

17.
Interleukin 2 activates a receptor-associated protein kinase   总被引:2,自引:0,他引:2  
The interleukin 2 (IL 2) receptor complex has been shown to consist of at least two IL 2 binding molecules, one of 55 to 57 kd (gp57Tac) and one of 75 to 78 kd apparent m.w. The data presented here indicate that a protein of m.w. 78,000 (pp78) co-immunoprecipitates with gp57Tac when a monoclonal antibody against gp57Tac is used. The 78 kd molecule is phosphorylated in vitro within the immune complex only in the presence of exogenously added IL 2, whereas the 57 kd molecule is phosphorylated equally in the presence or absence of IL 2. Phosphorylation in vitro of pp78 was demonstrated in extracts of human peripheral blood T cells (PBL-T) and the human T cell line Jurkat, but not in extracts of the human macrophage line U937 or the murine T cell line 2.8.2. Metabolic phosphorylation in intact cells reflects results observed in vitro; both pp78 and gp57Tac are phosphorylated in PBL-T and Jurkat, but not in U937. These data demonstrate that the IL 2 receptor complex contains an IL 2 responsive protein kinase activity and may signal the cell through a phosphorylation event.  相似文献   

18.
Summary The effects of purified Ca2+, phospholipid-dependent protein kinase (C-kinase) were studied on adenylate cyclase activity from rat brain striatum. C-kinase treatment of the membranes stimulated adenylate cyclase activity, the maximal stimulation between 50–80% was observed at 3.5 U/ml, whereas the catalytic subunit of cAMP dependent protein kinase did not show any effect on enzyme activity. The inclusion of Ca2+ and phosphatidyl serine did not augment the percent stimulation of adenylate cyclase by C-kinase, however EGTA inhibited the stimulatory effect of C-kinase on enzyme activity. Furthermore, the known inhibitors of C-kinase such as polymyxin-B and 1-(5-Isoquinoline sulfonyl)-2-methylpiperazine dihydrochloride (H-7) also inhibited the stimulatory effect of C-kinase on adenylate cyclase activity. In addition, in the presence of GTP the stimulatory effects of C-kinase on basal and N-Ethylcarboxamide adenosine- (NECA-), dopamine-(DA) and forskolin- (FSK) sensitive adenylate cyclase activities were augmented. On the other hand, the inhibitory effect of high concentrations of GTP on enzyme activity was attenuated by C-kinase treatment. In addition, oxotremorine inhibited adenylate cyclase activity in a concentration dependent manner, with an apparent Ki of about 10 µM and C-kinase treatment almost completely abolished this inhibition. These data suggest that C-kinase may play an important role in the regulation of adenylate cyclase activity possibly by interacting with a guanine nucleotide regulatory protein.Abbreviations C-kinase Ca2– phospholipid-dependent protein kinase - NECA N-Ethylcarboxamide adenosine - DA Dopamine - FSK Forskolin - PMA Phorbol 12-(-Myristate), 13-Acetate, H-7, 1-(5-isoquinoline sulfonyl)-2-methylpiperazine dihydrochloride Presented in part at the VIth International Conference on Cyclic nucleotides, calcium and protein phosphorylation signal transduction in biological systems. September 2-6, 1986, Bethesda, MD (USA).M.B.A.-S. was Canadian Heart Foundation Scholar during the course of these studies.  相似文献   

19.
The phospholipase C-mediated hydrolysis of phosphatidylcholine has been shown recently to be activated by a number of agonists. Muscarinic receptors, which trigger various signal transduction mechanisms including inhibition of adenylate cyclase through Gi, have been shown to be potent stimulants of this novel phospholipid degradative pathway. We demonstrate here, by exogenous addition of Bacillus cereus phosphatidylcholine-hydrolyzing phospholipase C, that phosphatidylcholine breakdown mimics the ability of carbachol to inhibit adenylate cyclase. This effect is sensitive to pertussis toxin and is entirely dependent on the presence of protein kinase C. This kinase is also required for the inhibition by carbachol of adenylate cyclase. These results suggest that the activation of phosphatidylcholine breakdown by phospholipase C may play an important role linking or favoring the coupling muscarinic receptors to Gi. Results presented here also show that phospholipase C-mediated hydrolysis of phosphoinositides by exogenous addition of Bacillus thuringiensis phosphoinositide-hydrolyzing phospholipase C does not affect adenylate cyclase, despite the fact that protein kinase C is translocated to an extent similar to that produced by the hydrolysis of phosphatidylcholine. According to the results shown here, both phospholipases also differ in their ability to down-regulate protein kinase C as well as to phosphorylate p80 and to transmodulate the binding of epidermal growth factor, two well established effects of protein kinase C in Swiss 3T3 fibroblasts. This emphasizes the complexity, from a functional point of view, of protein kinase C activation "in vivo."  相似文献   

20.
The flavonoid quercetin exhibited a biphasic effect on calcium and phospholipid-dependent protein kinase (protein kinase C) activity from rat brain and pig thyroid. At a low concentration (10(-7) M) quercetin stimulated the enzyme activity whereas at higher concentrations quercetin was inhibitory. By contrast the synthetic penta-0-ethylquercetin stimulated protein kinase C activity in a dose-dependent manner. When fresly dispersed pig thyroid cells were treated with penta-0-ethylquercetin or 12-0-tetradecanoylphorbol 13-acetate (TPA), a 50% decrease of the cytosolic protein kinase C activity was observed. These results suggest that the lipophilicity as well as other structural determinants may be crucial for the ability of flavonoids to regulate (inhibit or activate) the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号