首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atlantic cod populations live in a wide thermal range and can differ genetically and physiologically. Thermal sensitivity of metabolic capacity and swimming performance may vary along a latitudinal gradient, to facilitate performance in distinct thermal environments. To evaluate this hypothesis, we compared the thermal sensitivity of performance in two cod stocks from the Northwest Atlantic that differ in their thermal experience: Gulf of St Lawrence (GSL) and Bay of Fundy (BF). We first compared the metabolic, physiological and swimming performance after short-term thermal change to that at the acclimation temperature (7°C) for one stock (GSL), before comparing the performance of the two stocks after short-term thermal change. For cod from GSL, standard metabolism (SMR) increased with temperature, while active metabolism (AMR, measured in the critical swimming tests), EMR (metabolic rate after an exhaustive chase protocol), aerobic scope (AS) and critical swimming speeds (U crit and U b–c) were lower at 3°C than 7 or 11°C. In contrast, anaerobic swimming (sprint and burst-coasts in U crit test) was lower at 11 than 7 or 3°C. Factorial AS (AMR SMR−1) decreased as temperature rose. Time to exhaustion (chase protocol) was not influenced by temperature. The two stocks differed little in the thermal sensitivities of metabolism or swimming. GSL cod had a higher SMR than BF cod despite similar AMR and AS. This led factorial AS to be significantly higher for the southern stock. Despite these metabolic differences, cod from the two stocks did not differ in their U crit speeds. BF cod were better sprinters at both temperatures. Cod from GSL had a lower aerobic cost of swimming at intermediate speeds than those from BF, particularly at low temperature. Only the activity of cytochrome C oxidase (CCO) in white muscle differed between stocks. No enzymatic correlates were found for swimming capacities, but oxygen consumption was best correlated with CCO activity in the ventricle for both stocks. Overall, the stocks differed in their cost of maintenance, cost of transport and sprint capacity, while maintaining comparable thermal sensitivities.  相似文献   

2.
Earlier work found cuttlefish (Sepia officinalis) ventilatory muscle tissue to progressively switch to an anaerobic mode of energy production at critical temperatures (T c) of 7.0 and 26.8°C. These findings suggested that oxygen availability limits thermal tolerance. The present study was designed to elucidate whether it is the ventilatory apparatus that sets critical temperature thresholds during acute thermal stress. Routine metabolic rate (rmr) rose exponentially between 11 and 23°C, while below (8°C) and above (26°C) this temperature range, rmr was significantly depressed. Ventilation frequency (f V) and mean mantle cavity pressure (MMP) followed an exponential relationship within the entire investigated temperature range (8–26°C). Oxygen extraction from the ventilatory current (EO2) decreased in a sigmoidal fashion with temperature, falling from > 90% at 8°C to 32% at 26°C. Consequently, ventilatory minute volume (MVV) increased by a factor of 20 from 7 to 150% body weight min−1 in the same temperature interval. Increases in MMP and MVV resulted in ventilatory muscle power output (P out) increasing by a factor of > 80 from 0.03 to 2.4 mW kg−1 animal. Nonetheless, costs for ventilatory mechanics remain below 1.5% rmr in the natural thermal window of the population (English Channel, 9–17°C), owing to very low MMPs of < 0.05 kPa driving the ventilatory stream, and may maximally rise to 8.6% rmr at 26°C. Model calculations suggest that the ventilatory system can maintain high arterial PO2 values of > 14 kPa over the entire temperature interval. We therefore conclude that the cuttlefish ventilation system is probably not limiting oxygen transfer during acute thermal stress. Depression of rmr, well before critical temperatures are being reached, is likely caused by circulatory capacity limitations and not by fatigue of ventilatory muscle fibres.  相似文献   

3.
Thermal acclimation is frequently cited as a means by which ectothermic animals improve their Darwinian fitness, i.e. the beneficial acclimation hypothesis. As the critical swimming speed (U crit) test is often used as a proxy measure of fitness, we acclimated Atlantic cod (Gadus morhua) to 4 and 10°C and then assessed their U crit swimming performance at their respective acclimation temperatures and during acute temperature reversal. Because phenotypic differences exist between different populations of cod, we undertook these experiments in two different populations, North Sea cod and North East Arctic cod. Acclimation to 4 or 10°C had a minimal effect on swimming performance or U crit, however test temperature did, with all groups having a 10–17% higher U crit at 10°C. The swimming efficiency was significantly lower in all groups at 4°C arguably due to the compression of the muscle fibre recruitment order. This also led to a reduction in the duration of “kick and glide” swimming at 4°C. No significant differences were seen between the two populations in any of the measured parameters, due possibly to the extended acclimation period. Our data indicate that acclimation imparts little benefit on U crit swimming test in Atlantic cod. Further efforts need to identify the functional consequences of the long-term thermal acclimation process.  相似文献   

4.
Oceans are experiencing increasing acidification in parallel to a distinct warming trend in consequence of ongoing climate change. Rising seawater temperatures are mediating a northward shift in distribution of Atlantic cod (Gadus morhua), into the habitat of polar cod (Boreogadus saida), that is associated with retreating cold water masses. This study investigates the competitive strength of the co-occurring gadoids under ocean acidification and warming (OAW) scenarios. Therefore, we incubated specimens of both species in individual tanks for 4 months, under different control and projected temperatures (polar cod: 0, 3, 6, 8 °C, Atlantic cod: 3, 8, 12, 16 °C) and PCO2 conditions (390 and 1170 µatm) and monitored growth, feed consumption and standard metabolic rate. Our results revealed distinct temperature effects on both species. While hypercapnia by itself had no effect, combined drivers caused nonsignificant trends. The feed conversion efficiency of normocapnic polar cod was highest at 0 °C, while optimum growth performance was attained at 6 °C; the long-term upper thermal tolerance limit was reached at 8 °C. OAW caused only slight impairments in growth performance. Under normocapnic conditions, Atlantic cod consumed progressively increasing amounts of feed than individuals under hypercapnia despite maintaining similar growth rates during warming. The low feed conversion efficiency at 3 °C may relate to the lower thermal limit of Atlantic cod. In conclusion, Atlantic cod displayed increased performance in the warming Arctic such that the competitive strength of polar cod is expected to decrease under future OAW conditions.  相似文献   

5.
Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO2‐driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO2) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid–base‐relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3–6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO2 and mitochondrial capacities. Elevated PCO2 stimulated MO2 at cold and intermediate temperatures, but exacerbated warming‐induced constraints on MO2, indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO2. Increased MO2 in response to elevated PCO2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO2 conditions and suggest that acclimation to elevated PCO2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification constrains the thermal performance window of embryos, which has important implication for the susceptibility of cod to projected climate change.  相似文献   

6.
Controlled environment experiments were carried out to investigate thermal influences and population differences on growth of wild-caught juvenile Atlantic cod Gadus morhua L. from two regions of differing thermal regime off Scotland; the Clyde Sea on the west coast and St Andrews Bay on the east coast. Cod from the Clyde demonstrated significantly higher growth rates than cod from St Andrews. In both populations the growth rate was greater at 12°C than at 8°C. These population and temperature effects act to reinforce one another and it could therefore be predicted that the growth differences between the two areas in the wild should be even more pronounced. The results are consistent with the suggestion that cod may be locally adapted to their thermal environment.  相似文献   

7.
The effect of growth rate and maturation on the proximate composition and energy content of Atlantic cod, Gadus morhua L., was investigated over 10 months for each of two consecutive years, 1978–1980 at 5 and 8 °C. Relative energy and lipid content of whole cod increased with specific growth rate for all three sampling periods (November, January, March), each at 5 and 8 °C. Relative water content decreased with specific growth rate and temperature, and was lower in March than in January and November. Relative protein content was positively correlated with specific growth rate, but to a lesser degree than with temperature and age. Relative ash content was negatively correlated with specific growth rate. The effect of season and temperature on the proximate content of gonad, liver, muscle, and carcass was also determined. The major energy and lipid source in cod was the liver. Energy, lipid, and water were highly correlated to each other, and regressions are provided to allow for their prediction, given one of the components. Energy budgets for cod at 5 and 8 °C are calculated and the effect of increased ration size on the budget is estimated. The prediction of short-term specific growth rates of cod from the proximate composition is proposed. The proximate composition of cod is affected by growth rate and thus feeding level, and in turn directly affects behaviour. The relative proximate content of maturing and immature 3-yr-old cod was not found to be significantly different. Keywords: specific growth rate; proximate; bioenergetics; Atlantic cod; energy budget; temperature; season  相似文献   

8.
Abstract The germination of Sorghum bicolor seeds of 9 genotypes was tested at temperatures between 8°C and 48°C on a thermal gradient plate. Samples were tested from three regions of the panicle expected to differ in temperature during grain filling. Seeds of a tenth genotype, SPV 354, produced in controlled-environment glasshouses at different panicle temperatures, were tested similarly. In addition, the emergence of SPV 354 was measured from planting depths of 2 and 5 cm at mean soil temperatures of 15, 20 and 25°C. Four methods of calculating mean germination rate for the nine genotypes were compared. Germination characters like base, optimum and maximum temperature (Tb, To, Tm), thermal time (θ)and the germination rate at To(Rmax showed only small differences between methods. There was a range of genotypic variation in all characters: Tb 8.5–11.9°C; To, 33.2–37.5°C; Tm, 46.8–49.2°C; θ, 23.4–38.0°Cd; Rmax, 0.69–1.14-d-1. In contrast, mean germinability (G) was between 90% and 100% over the temperature range 13–40°C. Panicle temperature had no effect on any germination character in SPV 354. However, deeper burial increased θ for emergence and decreased G, irrespective of soil temperature except at 5 cm. Increasing panicle temperature, by reducing seed size, reduced G and increased θ by about 10% only at 15°C and 5 cm depth.  相似文献   

9.
Atlantic cod (0.8–2.5 kg) were transferred froni 8°C to 1°C seawater for 17 days. No fish died. Exposure to 1°C water produced no changes in hematocrit, or in plasma concentrations of Cl or Mg2+. Cold water exposure caused a marked increase in plasma cortisol and glucose concentrations. Fish in 1°C seawater had higher gill Na-K-ATPase activity than fish in 8°C seawater, whereas there were no differences in gill lipid class or fatty acid composition.  相似文献   

10.
Summary Polyethylene cannulae were implanted in pre- and post-branchial blood vessels allowing nonstressful blood sampling over a variety of activity ranges in an active tropical elasmobranch, the lemon shark (Negaprion brevirostris). TheP 50 was found to be 11.8 Torr at 24°C and pH of 7.7. A Bohr shift of –0.36 was also found. BloodP o 2 and oxygen content were measured during rest, routine swimming, and exercise in unanesthetized, free swimming juveniles. Under all conditions venous oxygen levels were low with venousP o 2 of 7.1±2.7 Torr, and venous oxygen content ( ) of 0.56±0.4 vol%. However, a large variability was found in arterial blood measurements. ArterialP o 2 ranged from 7 to 80 Torr, while arterial oxygen content (Cao 2) varied from 1.6 vol% to 6.8 vol% among ten experimental animals. A significant increase in arterialP o 2, oxygen content, and hematocrit was noted during increased activity. Since the venous system provides little or no oxygen reserve, increased oxygen extraction from the blood ( ) appears to be met by an increase inCao 2 rather than a decrease in . Mechanisms to accomplish this may include increasing hematocrit and vacular gill shunts.  相似文献   

11.
The effect of incubation and rearing temperature on muscle development and swimming endurance under a high-intensity swimming test was investigated in juvenile Chinook salmon (Oncorhynchus tshawytscha) in a hatchery experiment. After controlling for the effects of fork length (LF) and parental identity, times to fatigue of fish were higher when fish were incubated or reared at warmer temperatures. Significant differences among combinations of pre- and post-emergence temperatures conformed to 15–15°C > 15–9°C > 9–9°C > 7–9°C > 7–7°C in 2011 when swimming tests were conducted at 300 accumulated temperature units post-emergence and 15–9°C > (7–9°C = 7–7°C) in 2012 when swimming tests were conducted at an LF of c. 40 mm. The combination of pre- and post-emergence temperatures also affected the number and size of muscle fibres, with differences among temperature treatments in mean fibre cross-sectional area persisting after controlling for LF and parental effects. Nonetheless, neither fibre number nor fibre size accounted for significant variation in swimming endurance. Thus, thermal carryover effects on swimming endurance were not mediated by thermal imprinting of muscle structure. This is the first study to test how temperature, body size and muscle structure interact to affect swimming endurance during early development in salmon.  相似文献   

12.
13.
The objective of this study was to determine the upper thermal limits of Arctic cod Boreogadus saida by measuring the response of maximum heart rate (fHmax) to acute warming. One set of fish were tested in a field laboratory in Cambridge Bay (CB), Nunavut (north of the Arctic Circle), and a second set were tested after air transport to and 6 month temperature acclimation at the Vancouver Aquarium (VA) laboratory. In both sets of tests, with B. saida acclimated to 0° C, fHmax increased during acute warming up to temperatures considerably higher than the acclimation temperature and the near‐freezing Arctic temperatures in which they are routinely found. Indeed, fHmax increased steadily between 0·5 and 5·5° C, with no significant difference between the CB and VA tests (P > 0·05) and with an overall mean ± s.e. Q10 of 2·4 ± 0·5. The first Arrhenius breakpoint temperature (TAB) for fHmax was also statistically indistinguishable for the two sets of tests (mean ± s.e. 3·2 ± 0·3 and 3·6 ± 0·3° C), suggesting that the temperature optimum for B. saida could be reliably measured after live transport to a more southerly laboratory location. Continued warming above 5·5° C revealed a large variability among individuals in the upper thermal limits that triggered cardiac arrhythmia (Tarr), ranging from 10·2 to 15·2° C with mean ± s.e. 12·4 ± 0·4° C (n = 11) for the field study. A difference did exist between the CB and VA breakpoint temperatures when the Q10 value decreased below 2 (the Q10 breakpoint temperature; TQB) at 8·0 and 5·5° C, respectively. These results suggest that factors, other than thermal tolerance and associated cardiac performance, may influence the realized distribution of B. saida within the Arctic Circle.  相似文献   

14.
The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.  相似文献   

15.
The temperature relationship of routine metabolic rate (Rr) of non-feeding, non-growing Coregonus lavaretus larvae between 2 and 15°C is characterized by Q10-values ranging from l.8-2.45. The rate of growth, based on weight determinations, of first-feeding larvae amounted to 3.5, 7.6 and 9.4% day-1 at 5, 10 and 12°C respectively, from which Q10-values between 4.0 and 4.8 can be calculated. The rate of increase of muscle mass between 5 and 10°C, based on the determination of the cross-sectional area of inner muscle fibres, resulted in a Q10-value of 4.5. Water temperature influenced the pattern of growth of the inner muscle fibres. At hatching, after 360 day degrees, total muscle mass of larvae reared at 4 and 8°C was independent of temperature, but at 4°C the rate of mass increase owed more to hyperplasia (increase in fibre number) than to hypertrophy (increase in fibre mass), whereas at 8°C the opposite was the case. The calculation of power budgets (including the metabolic cost of growth) of first-feeding larvae yielded net conversion efficiencies (K2) increasing with temperature from 46.3% at 5°C to 54.7% at 12°C. Comparing our data with literature data two general conclusions can be drawn. (1) In first-feeding larvae the net, but not the gross, conversion efficiency of food energy increases with temperature. This is due to net energy input being characterized by a much higher Q10-value than energy expenditures. (2) In embryos of freshwater fish so far investigated hyperplasia plays a greater role in the increase of fibre mass than hypertrophy at the lower temperature, whereas in embryos of marine fish hyperplasia prevails at the higher temperature. It is suggested that this discrepancy correlates with the high concentration of free amino acids in the eggs of marine species which provide an additional, easily available, source of metabolic energy absent in freshwater species.  相似文献   

16.
The view that behavior and physiological performance are tightly coadapted is a central principle of physiological ecology. Here, we test this principle using a comparative study of evolutionary patterns in thermal preferences and the thermal dependence of sprinting in some Australian skinks (Lygosominae). Thermal preferences (Tp) differ strikingly among genera (range 24° to 35°C), but critical thermal maxima (CTMax) (range 38° to 45°C) and optimal temperatures for sprinting (To, 32° to 35°C) vary less. Diurnal genera have relatively high Tp, To, and CTMax. In contrast, nocturnal genera have low Tp but have moderate to high To and CTMax. Both nonphylogenetic and phylogenetic (minimum-evolution) approaches suggest that coadaptation is tight only for genera with high Tp. Phylogenetic analyses suggest that low Tp and, thus, partial coadaptation are evolutionarily derived, indicating that low thermal preferences can evolve, even if this results in reduced performance. In one instance, thermal preferences and the thermal dependence of sprinting may have evolved in opposite directions, a phenomenon we call “antagonistic coadaptation.” We speculate on factors driving partial coadaptation and antagonistic coadaptation in these skinks.  相似文献   

17.
Atlantic salmon Salmo salar eggs derived from a single family were incubated at two different water temperature regimes, with a mean temperature between fertilization and first feeding differing between 6 and 10° C (HT) and 2–6° C (LT). From first feed the fry were kept under the same rearing conditions and fed either high (50%) or low (45%) protein diet level of equivalent energy content until smoltification. All treatments were carried out in duplicate tanks. At first feeding the groups were similar in mass, but thereafter the HT‐fish were heavier and longer compared to the LT‐fish throughout the experiment. The groups fed the high protein diet were significantly heavier and longer compared with the corresponding low protein diet. A strong positive relationship was observed between LF and total white muscle cross‐sectional area (CSA), white muscle fibre diameter and fibre number. There were also equivalent relationships with body mass. There were no significant differences in CSA, the mean diameter or the number of white muscle fibres per CSA between groups at first feed. Muscle fibre number and CSA increased in all groups during the experiment, whereas fibre diameter reached a plateau when the fish reached > 9 cm LF. There were only minor effects of pre‐hatch and yolk sac stage temperature on CSA and fibre number per CSA during the juvenile stage. In short periods the LT‐group had larger CSA and higher fibre number than the HT‐groups, but this differences had disappeared by the end of the juvenile stage. No differences in mean fibre diameter were found between groups, except at the time of smoltification. When the fish approached smoltification a decrease in mean fibre diameter and an increase in muscle fibres <25 µm was seen and taken as an indication of recruitment of new fibres (hyperplasia). Only minor differences in CSA, fibre number or fibre diameter was observed between high and low protein diet groups.  相似文献   

18.
The photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica was examined by measuring whole-canopy CO2 gas exchange and chlorophyll (Chl) a fluorescence of plants growing near Palmer Station along the Antarctic Peninsula. Both species had negligible midday net photosynthetic rates (Pn) on warm, usually sunny, days (canopy air temperature [Tc]> 20°C), but had relatively high Pn on cool days (Tc<10°C). Laboratory measurements of light and temperature responses of Pn showed that high temperature, not visible irradiance, was responsible for depressions in Pn on warm sunny days. The optimal leaf temperatures (Tl) for Pn in C. quitensis and D. antarctica were 14 and 10°C, respectively. Both species had substantial positive Pn at 0°C Tl, which were 28 (C. quitensis) and 32% (D. antarctica) of their maximal Pn, and we estimate that their low-temperature compensation points occurred at ?2°C Tl (C. quitensis) and ?3°C (D. antarctica). Because of the strong warming trend along the peninsula over recent decades and predictions that this will continue, we were particularly interested in the mechanisms responsible for their negligible rates of Pn on warm days and their unusually low high-temperature compensation points (i.e., 26°C in C. quitensis and 22°C in D. antarctica). Low Pn at supraoptimal temperature (25°C) appeared to be largely due to high rates of temperature-enhanced respiration. However, there was also evidence for direct impairment of the photosynthetic apparatus at supraoptimal temperature, based on Chl fluorescence and Pn/intercellular CO2 concentration (ci) response curve analyses. The breakpoint or critical temperature (Tcr) of minimal fluorescence (Fo) was ≈42°C in both species, which was well above the temperatures where reductions in Pn were evident, indicating that thylakoid membranes were structurally intact at supraoptimal temperatures for Pn. The optimal Tl for photochemical quenching (qp) and the quantum yield of photosystem II (PSII) electron transfer (φPSII) were 9 and 7°C in C. quitensis and D. antarctica, respectively. Supraoptimal temperatures resulted in lower qp and greater non-photochemical quenching (qNP), but had little effect on Fo, maximal fluorescence (Fm) or the ratio of variable to maximal fluorescence (Fv/Fm) in both species. In addition, carboxylation efficiencies or initial slopes of their Pn/ci response were lower at supraoptimal temperatures, suggesting reduced activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Although continued warming along the peninsula will increase the frequency of supraoptimal temperatures, Tc at our field site averaged 4.3°C and was below the temperature optima for Pn in these species for the majority of diurnal periods (86%) during the growing season, suggesting that continued warming will usually improve their rates of Pn.  相似文献   

19.
We examined tissue-specific levels of heat shock protein 70 (hsp70) and whole body lipid levels in juvenile redband trout (Oncorhynchus mykiss gairdneri) from the South Fork of the John Day River (SFJD), Oregon, with the goal of determining if these measures could be used as physiological indicators of thermal habitat quality for juvenile redband trout. Our objectives were to determine the hsp70 induction temperature in liver, fin, and white muscle tissue and characterize the relation between whole body lipids and hsp70 for fish in the SFJD. We found significant increases in hsp70 levels between 19 and 22°C in fin, liver, and white muscle tissue. Maximum hsp70 levels in liver, fin, and white muscle tissue occurred when mean weekly maximum temperatures (MWMT) exceeded 20–22°C. In general, the estimated hsp70 induction temperature for fin and white muscle tissue was higher than liver tissue. Whole body lipid levels began to decrease when MWMT exceeded 20.4°C. There was a significant interaction between temperature and hsp70 in fin and white muscle tissue, but not liver tissue. Collectively, these results suggest that increased hsp70 levels in juvenile redband trout are symptomatic of thermal stress, and that energy storage capacity decreases with this stress. The possible decrease in growth potential and fitness for thermally stressed individuals emphasizes the physiological justification for thermal management criteria in salmon-bearing streams.  相似文献   

20.
Leaves of the two new chlorophyll b-less rice mutants VG28-1, VG30-5 and the wild type rice cv. Zhonghua 11 were subjected to temperatures 28, 36, 40, 44 and 48℃ in the dark for 30 min or gradually elevated temperature from 30℃ to 80℃ at 0.5℃/min. The thermostability of photosynthetic apparatus was estimated by the changes in chlorophyll fluorescence parameters, photosynthetic rate and pigment content, chloroplast ultrastructure and tissue location of H2O2 accumulation. There were different patterns of Fo-temperature curves between the Chl b-less mutants and the wild type plant, and the temperature of Fo rising threshold was shifted 3℃ lower in the Chl b-less mutants (48℃) than in the wild type (51℃). At temperature up to about 45℃, chloroplasts were swollen and thylakoid grana became misty accompanied with the complete loss of photosynthetic oxygen evolution in the two Chl b-less mutants, but chloroplast ultrastruc-ture in the wild type showed no obvious alteration. After 55℃ exposure, the disordered thylakoid and significant H2O2 accumulation in leaves were found in the two Chl b-less mutants, whereas in the wild type plant, less H2O2 was accumulated and the swollen thylakoid still maintained a cer-tain extent of stacking. A large extent of the changes in qP, NPQ and Fv/Fm was consistent with the Pn decreasing rate in the Chl b-less mutants during high temperature treatment as compared with the wild type. The results indicated that the Chl b-less mutants showed a tendency for higher thermosensitivity, and loss of Chl b in LHC II could lead to less thermostability of PSII structure and function. Heat damage to photosynthetic apparatus might be partially attributed to the in-ternal oxidative stress produced at severely high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号