首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemolytic phospholipase C (PlcHR) expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC) produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase). Data presented herein indicate that picomolar (pM) concentrations of PlcHR are selectively lethal to endothelial cells (EC). An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS), but not control peptides (i.e., GDGRS), block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD) are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation), which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature). Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to ∼50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization). An active site mutant of PlcHR (Thr178Ala) exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where angiogenesis contributes pathological conditions (e.g., vascularization of tumors, diabetic retinopathy).  相似文献   

2.
PlcHR(2) is the paradigm member of a novel phospholipase C/phosphatase superfamily, with members in a variety of bacterial species. This paper describes the phospholipase C and sphingomyelinase activities of PlcHR(2) when the substrate is in the form of large unilamellar vesicles, and the subsequent effects of lipid hydrolysis on vesicle and bilayer stability, including vesicle fusion. PlcHR(2) cleaves phosphatidylcholine and sphingomyelin at equal rates, but is inactive on phospholipids that lack choline head groups. Calcium in the millimolar range does not modify in any significant way the hydrolytic activity of PlcHR(2) on choline-containing phospholipids. The catalytic activity of the enzyme induces vesicle fusion, as demonstrated by the concomitant observation of intervesicular total lipid mixing, inner monolayer-lipid mixing, and aqueous contents mixing. No release of vesicular contents is detected under these conditions. The presence of phosphatidylserine in the vesicle composition does not modify significantly PlcHR(2)-induced liposome aggregation, as long as Ca(2+) is present, but completely abolishes fusion, even in the presence of the cation. Each of the various enzyme-induced phenomena have their characteristic latency periods, that increase in the order lipid hydrolysis相似文献   

3.
We examined whether human cardiac tissue contains diadenosine polyphosphates and investigated their physiological role. Extracts from human cardiac tissue from transplant recipients were fractionated by size exclusion-, affinity-, anion exchange- and reversed-phase chromatography. MALDI-MS analysis of two absorbing fractions revealed molecular masses of 676.2 Da and 756.0 Da. The UV spectra of both fractions were identical to that of adenosine. Postsource decay MALDI mass spectrometry indicated that the molecules with a mass of 676.2 Da and 757.0 Da contained AMP and ATP, respectively. As shown by enzymatic cleavage, both molecules consist of two adenosines interconnected by either two or three phosphates in 5'-positions of the riboses. Two substances can be identified as 5',5"'-P1,P2-diphosphate (Ap2A) and 5',5"'-P1, P3-triphosphate (Ap3A). Ap2A and Ap3A, together with ATP and ADP, are stored in myocardial-specific granules in biologically active concentrations. In the isolated perfused rat heart, Ap2A and Ap3A caused dose-dependent coronary vasodilations. In myocardial preparations, Ap2A and Ap3A attenuated the effect of isoproterenol, exerting a negative inotropic effect. The calcium current of guinea pig ventricular myocytes, stimulated by isoproterenol, was also attenuated by Ap2A and Ap3A. The presence of Ap2A and Ap3A in cardiac-specific granules and the actions of these substances on the myocardium and coronary vessels indicate a role for these substances as endogenous modulators of myocardial functions and coronary perfusion.  相似文献   

4.
Plasmids were constructed for overexpression of the Escherichia coli dihydrolipoamide acetyltransferase (1-lip E2, with a single hybrid lipoyl domain per subunit) and dihydrolipoamide dehydrogenase (E3). A purification protocol is presented that yields homogeneous recombinant 1-lip E2 and E3 proteins. The hybrid lipoyl domain was also expressed independently. Masses of 45,953+/-73Da (1-lip E2), 50,528+/-5.5Da (apo-E3), 51,266+/-48Da (E3 including FAD), and 8982+/-4.0 (lipoyl domain) were determined by MALDI-TOF mass spectrometry. The purified 1-lip E2 and E3 proteins were functionally active according to the overall PDHc activity measurement. The lipoyl domain was fully acetylated after just 30 s of incubation with E1 and pyruvate. The mass of the acetylated lipoyl domain is 9019+/-2Da according to MALDI-TOF mass spectrometry. Treatment of the 1-lip E2 subunit with trypsin resulted in the appearance of the lipoyl domain with a mass of 10,112+/-3Da. When preincubated with E1 and pyruvate, this tryptic fragment was acetylated according to the mass increase. MALDI-TOF mass spectrometry was thus demonstrated to be a fast and precise method for studying the reductive acetylation of the recombinant 1-lip E2 subunit by E1 and pyruvate.  相似文献   

5.
Pseudomonas aeruginosa and other bacterial pathogens express one or more homologous extracellular phospholipases C (PLC) that are secreted through the inner membrane via the twin arginine translocase (TAT) pathway. Analysis of TAT mutants of P. aeruginosa uncovered a previously unidentified extracellular PLC that is secreted via the Sec pathway (PlcB). Whereas all presently known PLCs of P. aeruginosa (PlcH, PlcN and PlcB) hydrolyse phosphatidylcholine (PC), only PlcB is active on phosphatidylethanolamine (PE). plcB candidates were identified based on deductions made from bioinformatics data and extant DNA microarray data. Among these candidates, a gene (PA0026) required for the expression of an extracellular PE-PLC was identified. The protein encoded by PA0026 has limited, but significant similarity, over a short region (approximately 60aa of 328), to a class of zinc-dependent prokaryotic PLCs. A conserved His residue of PlcB (His216) that is required for coordinate binding of zinc in this class of PLCs was mutated. Analysis of this mutant established that the protein encoded by PA0026 is PlcB. Three in-dependent recently published reports indicate that homoserine lactone-mediated quorum sensing regulates the expression of PA0026 (i.e. plcB). PlcB, but not PlcH or PlcN, is required for directed twitching motility up a gradient of certain kinds of phospholipids. This response shows specificity for the fatty acid moiety of the phospholipid.  相似文献   

6.
Deamidation of asparaginyl residues is a common posttranslational modification in proteins and has been studied extensively because of its important biological effects, such as those on enzymatic activity, protein folding, and proteolytic degradation. However, characterization of the sites of deamidation of a protein has been a difficult analytical problem. In this study, mass spectrometry has been used as an analytical tool to characterize the deamidation of barstar, an RNAse inhibitor. Upon incubation of the protein at alkaline pH for 5 h, intact mass analysis of barstar, using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI QToF MS), indicated an increase in the mass of +2 Da, suggesting possible deamidation of the protein. The sites of deamidation have been identified using the conventional bottom-up approach using a capillary liquid chromatography connected on line to an ESI QToF mass spectrometer and top down approach by direct infusion of the intact protein and fragmenting inside MS. These chemical modifications are shown to lead to stabilization of an unfolding intermediate, which can be observed in equilibrium unfolding studies.  相似文献   

7.
Phosphoinositide-specific phospholipase C (PLC) activities have been partially purified from cultured vascular smooth muscle cells and analyzed for substrate specificity, calcium and pH requirements, and molecular weight. The purification procedure involved DEAE-cellulose and heparin-Sepharose chromatographies followed by Mono Q and size exclusion high performance liquid chromatography. This technique resolves multiple peaks of activity using phosphatidylinositol (PI) and PI 4,5-bisphosphate (PIP2) as substrates. The major peak was purified to near homogeneity as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PLC activity in vascular smooth muscle cells can be divided into two types based on their calcium and pH requirements, substrate preferences, and molecular weights. The low molecular weight PLC hydrolyzes both PI and PIP2, has a molecular mass of 58 kDa, requires the most calcium for full activation, and has a PI-pH profile that shifts slightly with calcium concentration. Screening a cDNA library with oligonucleotides directed against several of the known PLCs identified a highly expressed PLC cDNA that is 99% homologous to PLC-alpha, suggesting that this low molecular weight peak in fact corresponds to PLC-alpha. The high molecular mass peak (157 kDa) shows much greater activity against PI than PIP2, is active at lower calcium concentrations, and has a PI-pH optimum of 5.0 regardless of calcium concentration. Each of the PIP2 PLC activities is strongly dependent on the relative levels of calcium and pH in the assay buffer. These observations suggest that vascular smooth muscle contains both a high and low molecular weight PLC whose activities are affected markedly by the changes in calcium and pH accompanying hormonal stimulation of the cell.  相似文献   

8.
Two isoforms of a protease inhibitor were isolated by ion-exchange chromatography of tepary bean (Phaseolus acutifolius G.) seed proteins. The main isoform was used to determine the amino acid sequence of the protein. It is an 80 amino acid residue protein with a molecular mass of 8765 Da, showing sequence homology with the Bowman-Birk family of protease inhibitors. Several regions with amino acid microheterogeneity were found, corroborating the possible presence of isoforms. Mass spectrometry analysis was carried out to confirm isoforms. The presence of dimer and trimer forms of the inhibitor was shown through electrophoresis and mass spectrometry. Another unusual characteristic for this inhibitor was its ability to bind metals. The presence of four sequential histidines at the N-terminal end of the protein could account for this binding. Mass spectrometry and atomic absorption spectroscopy support the presence of calcium in the native inhibitor.  相似文献   

9.
We describe a simple, fast, sensitive, and nonisotopic bioanalytical technique for the detection of tyrosine-phosphorylated peptides and the determination of sites of protein tyrosine phosphorylation. The technique employs a protein tyrosine phosphatase micro enzyme reactor coupled on-line to either capillary electrophoresis or liquid chromatography and electrospray ionization mass spectrometry instruments. The micro enzyme reactor was constructed by immobilizing genetically engineered, metabolically biotinylated human protein tyrosine phosphatase beta onto the inner surface of a small piece of a 50-microns inner diameter, 360-microns outer diameter fused silica capillary or by immobilization of the phosphatase onto 40-90-microns avidin-activated resins. By coupling these reactors directly to either a capillary electrophoresis column or a liquid chromatography column, we were able to rapidly perform enzymatic dephosphorylation and separation of the reaction products. Detection and identification of the components of the reaction mixture exiting these reactors were done by mass analysis with an on-line electrospray ionization mass spectrometer. Tyrosine-phosphorylated peptides, even if present in a complex peptide mixture, were identified by subtractive analysis of peptide patterns generated with or without phosphatase treatment. Two criteria, namely a phosphatase-induced change in hydropathy and charge, respectively, and a change in molecular mass by 80 Da, were used jointly to identify phosphopeptides. We demonstrate that, with this technique, low picomole amounts of a tyrosine-phosphorylated peptide can be detected in a complex peptide mixture generated by proteolysis of a protein and that even higher sensitivities can be realized if more sensitive detection systems are applied.  相似文献   

10.
Submitochondrial particles of bovine heart were hydrolyzed by phospholipase A2 and the products were analyzed by liquid chromatography electrospray ionization-mass spectrometry. We found a fatty acid with a molecular mass of 268 Da and a retention time longer than that of linoleic acid. Next, we synthesized organically cis-9,10-methylenehexadecanoic acid, which has a molecular mass similar to that of the extracted fatty acid, and characterized its high performance liquid chromatography and gas chromatography-mass spectrometry profiles. Using these data we were able to identify endogenous cis-9,10-methylenehexadecanoic acid in rat and human heart and liver tissues that had been hydrolyzed by phospholipase A2. This fatty acid was not detected in tissue extracts that had not been hydrolyzed by phospholipase A2. Similar amounts of cis-9, 10-methylenehexadecanoic acid were measured in tissue extracts after total hydrolysis. These results suggest that cis-9, 10-methylenehexadecanoic acid is a fatty acid component, in the sn-2 position, of phospholipids in some mammalian tissue.  相似文献   

11.
A role for one of many exocellular enzymes produced by Pseudomonas aeruginosa--phospholipase C (PLC)--as a prime candidate virulence factor in fleecerot dermatitis has been examined. The addition of Tween 80 in tryptose minimal medium effectively perturbed the membrane system of a field isolate of P. aeruginosa, resulting in increased production and release of a periplasmic enzyme marker, alkaline phosphatase (AP), and also of PLC. PLC activity levels in the culture supernatant were 10- to 15-fold higher in the presence of Tween than in its absence. Apart from AP, the culture medium contained little or no detectable proteolytic enzyme activity, thereby facilitating the partial purification of a haemolytic form of PLC by anion-exchange chromatography. This enzyme, when injected intradermally into the skin of sheep, elicited histopathological lesions virtually identical to those seen in naturally occurring fleecerot. In addition, serum from each of eight sheep afflicted with fleecerot contained high levels of circulating anti-PLC antibody activity when assayed by ELISA. Since these antibodies did not affect the enzymic function of PLC, it is likely that they do not bind to, or are incapable of conformational modification of, the active site.  相似文献   

12.
Using an antiserum directed against the highly-conserved C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP), numerous immunoreactive endocrine cells were identified within the pancreas of the European common frog, R. temporaria. An acidified ethanolic extract of pancreatic tissue (0.859 g, n = 35) contained 26.2 nmol equivalents/g of tissue. Gel permeation chromatography of the extract resolved a single peak of immunoreactivity co-eluting with synthetic bovine PP standard. Reverse phase HPLC of this material resolved a single peak of immunoreactivity which was purified to homogeneity following chromatography on a semipreparative C-18 column and an analytical C-8 column. Plasma desorption mass spectrometry (PDMS) of the purified peptide resolved a single component with a molecular mass of 4240.9 Da. Direct gas phase sequencing established the sequence of the first 26 residues. Following incubation of the peptide with endopeptidase Asp-N and direct application of the digest to the sequencer, the entire primary structure of the peptide was established as: APSEPHHPGDQATQDQLAQYYSDLYQYITFVTRPRF. The derived molecular mass of this peptide, incorporating a C-terminal amide, was 4240.6 Da which is entirely consistent with that obtained by PDMS.  相似文献   

13.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and electrospray ionization mass spectrometry (ESI MS) analysis of a 6x His-tagged recombinant form of rat mutant selenoprotein W (RMSW) reveals that aerobic growth conditions primarily produce a form of RMSW without bound glutathione (10,305 Da) whereas anaerobic conditions produce a glutathione-bound (305 Da) form (10,610 Da). Purification of RMSW was achieved with a procedure employing acetone precipitation and DEAE-cellulose chromatography, in addition to Ni-NTA agarose chromatography. Additional steps, including polyvalent metal ion binding (PMIB) resin chromatography and CM-cellulose chromatography, were necessary after elution from the Ni-NTA agarose column, in order to maintain solubility of the purified protein.  相似文献   

14.
Snake venom three finger toxins (3FTxs) are a non‐enzymatic family of venom proteins abundantly found in elapids. We have purified a 7579.5 ± 0.591 Da 3FTx named as Nk‐3FTx from the venom of Naja kaouthia of North East India origin. The primary structure was determined by a combination of N‐terminal sequencing and electrospray ionization  liquid chromatography‐mass spectrometry/mass spectrometry. Biochemical and biological characterization reveal that it is nontoxic to human cell lines and exhibit mild anticoagulant activity when tested on citrated human plasma. Nk‐3FTx was found to affect the compound action potential (CAP) and nerve conduction velocity of isolated toad sciatic nerve. This is the first report of a non‐conventional 3FTx from Naja kaouthia venom that reduces CAP for its neurotoxic effect. Further studies can be carried out to understand the mechanism of action and to explore its potential therapeutic application.  相似文献   

15.
Paenibacillus sp. strain B2, isolated from the mycorrhizosphere of sorghum colonized by Glomus mosseae, produces an antagonistic factor. This factor has a broad spectrum of activity against gram-positive and gram-negative bacteria and also against fungi. The antagonistic factor was isolated from the bacterial culture medium and purified by cation-exchange, reverse-phase, and size exclusion chromatography. The purified factor could be separated into three active compounds following characterization by amino acid analysis and by combined reverse-phase chromatography and mass spectrometry (liquid chromatography-mass spectrometry and mass spectrometry-mass spectrometry). The first compound had the same retention time as polymyxin B1, whereas the two other compounds were more hydrophobic. The molecular masses of the latter compounds are 1,184.7 and 1,202.7 Da, respectively, and their structure is similar to that of polymyxin B1, with a cyclic heptapeptide moiety attached to a tripeptide side chain and a fatty acyl residue. They both contain threonine, phenylalanine, leucine, and 2,4-diaminobutyric acid residues. The peptide with a molecular mass of 1,184.7 contains a 2,3-didehydrobutyrine residue with a molecular mass of 101 Da replacing a threonine at the A2 position of the polymyxin side chain. This modification could explain the broader range of antagonistic activity of this peptide compared to that of polymyxin B.  相似文献   

16.
Highly active cytochrome b(6)f complexes from spinach and the cyanobacterium Mastigocladus laminosus have been analyzed by liquid chromatography with electrospray ionization mass spectrometry (LCMS+). Both size-exclusion and reverse-phase separations were used to separate protein subunits allowing measurement of their molecular masses to an accuracy exceeding 0.01% (+/-3 Da at 30,000 Da). The products of petA, petB, petC, petD, petG, petL, petM, and petN were detected in complexes from both spinach and M. laminosus, while the spinach complex also contained ferredoxin-NADP(+) oxidoreductase (Zhang, H., Whitelegge, J. P., and Cramer, W. A. (2001) Flavonucleotide:ferredoxin reductase is a subunit of the plant cytochrome b(6)f complex. J. Biol. Chem. 276, 38159-38165). While the measured masses of PetC and PetD (18935.8 and 17311.8 Da, respectively) from spinach are consistent with the published primary structure, the measured masses of cytochrome f (31934.7 Da, PetA) and cytochrome b (24886.9 Da, PetB) modestly deviate from values calculated based upon genomic sequence and known post-translational modifications. The low molecular weight protein subunits have been sequenced using tandem mass spectrometry (MSMS) without prior cleavage. Sequences derived from the MSMS spectra of these intact membrane proteins in the range of 3.2-4.2 kDa were compared with translations of genomic DNA sequence where available. Products of the spinach chloroplast genome, PetG, PetL, and PetN, all retained their initiating formylmethionine, while the nuclear encoded PetM was cleaved after import from the cytoplasm. While the sequences of PetG and PetN revealed no discrepancy with translations of the spinach chloroplast genome, Phe was detected at position 2 of PetL. The spinach chloroplast genome reports a codon for Ser at position 2 implying the presence of a DNA sequencing error or a previously undiscovered RNA editing event. Clearly, complete annotation of genomic data requires detailed expression measurements of primary structure by mass spectrometry. Full subunit coverage of an oligomeric intrinsic membrane protein complex by LCMS+ presents a new facet to intact mass proteomics.  相似文献   

17.
The BmjeTX-I and BmjeTX-II isoforms of PLA2 were purified from Bothrops marajoensis venom by ion-exchange chromatography and reverse phase HPLC. Both isoforms showed a molecular mass of 13808.89 Da (BmjeTX-I) and 13863.97 Da (BmjeTX-II) determined by based on the determined primary structures and SDS–PAGE and confirmed experimentally by MALDI-TOF mass spectrometry. Multiple alignment of BmjeTX-I and BmjeTX-II isoforms of PLA2 show high degree of homology with basic PLA2 myotoxins from other Bothrops venoms. Ex vivo, both isoforms caused a blockade of the neuromuscular transmission in young chick biventer cervicis preparations in a similar way to other Bothrops species. In chick preparations, contractures to exogenous acetylcholine (55 and 110 μM) or KCl (13.4 mM) were unaltered after complete blockade for the both isoforms BmjeTX-I and BmjeTX-II of PLA2. These results, which strongly suggested a presynaptic mechanism of action for these toxins. In mice, both isoforms induced myonecrosis and a systemic interleukin-6 response upon intramuscular injection. Both isoforms BmjeTX-I and BmjeTX-II of PLA2 also induced moderate marked paw edema, evidencing the local increase in vascular permeability. Since both isoforms of PLA2 exert a strong proinflammatory effect, the enzymatic hydrolysis of phospholipids might be relevant for this phenomenon and produced cytotoxicity in murine skeletal muscle C2C12 myoblasts and myotubes.  相似文献   

18.
A generic continuous-flow assay for phosphate-consuming or -releasing enzymes coupled on-line to liquid chromatography (LC) has been developed. Operating the LC-biochemical assay in combination with mass spectrometry allows the fast detection and identification of inhibitors of these enzymes in complex mixtures. The assay is based on the detection of phosphate, released by the on-line continuous-flow enzymatic reaction, using a fluorescent probe. The probe consists of fluorophore-labeled phosphate-binding protein, which shows a strong fluorescence enhancement upon binding to inorganic phosphate. To detect very small changes of the phosphate concentration in a postcolumn enzymatic reaction medium, the enzymatic removal of phosphate impurities from solvents, reagents, and samples was optimized for application in continuous flow. The potential of the phosphate probe is demonstrated by monitoring the enzymatic activity, i.e., the phosphate release, from alkaline phosphatase. The selectivity of the phosphate readout, necessary to distinguish between phosphate containing substrate or product and free inorganic phosphate released after enzymatic conversion, is shown. The applicability of LC coupled to the enzymatic assay using the phosphate readout was demonstrated by detection of tetramisole in a plant extract as inhibitor of alkaline phosphatase. Parallel mass spectrometry allowed the simultaneous confirmation of the identity of the inhibitor.  相似文献   

19.
Erythrocyte transglutaminase was purified by anion-exchange chromatography, size exclusion and affinity chromatography. Homogeneity was achieved by an additional step of HPLC size-exclusion chromatography. The molecular mass of the purified enzyme was calculated to be 65,000 Da by size-exclusion chromatography and sucrose-gradient centrifugation, and 92,000 Da by SDS-PAGE, thus suggesting a high degree of asymmetry. The amino-acid composition of erythrocyte transglutaminase differed substantially from that of the guinea-pig liver enzyme, notably with respect to the number of histidine, cysteine and acidic amino-acid residues. The enzyme has an absolute requirement for divalent cations for activity: calcium, manganese, and the lanthanides terbium and gadolinium activate the enzyme in decreasing order of efficacy, while no activity is displayed in the presence of magnesium. In the presence but not in the absence of calcium ions, the enzyme is rapidly inactivated by N-ethylmaleimide and by diethylpyrocarbonate suggesting that the cation influences the reactivity of amino acids essential for catalysis. When erythrocyte proteins are employed as amine acceptors in the presence of calcium, the erythrocyte transglutaminase appears to preferentially modify membrane-associated proteins, although, in the absence of calcium ions and exogenous amines, it displays a pH-dependent interaction with soluble proteins.  相似文献   

20.
Phospholipase D (PLD) forms the major family of phospholipases that was first discovered and cloned in plants. In this report we have shown, for the first time, that C2 phosphatidylinositol-4,5-bisphosphate (PIP2)-dependent PLD(s) from 5 day hypocotyls of Brassica oleracea associated with plasma membrane is covalently modified-phosphorylated. Pre-incubation of the plasma membrane fraction with acid phosphatase resulted in concentration-dependent inhibition of PIP2-dependent PLD activity. Using matrix-assisted laser desorption/ionization time of flight mass spectrometry of tryptic in-gel digests, the BoPLDgamma(1,2) isoform was identified. Comparing the spectra of the proteins obtained from the plasma membrane fractions treated and non-treated with acid phosphatase, three peptides differing in the mass of the phosphate group (80 Da) were revealed: TMQMMYQTIYK, EVADGTVSVYNSPR and KASKSRGLGK which possess five potential Ser/Thr phosphorylation sites. Our findings suggest that a phosphorylation/dephosphorylation mechanism may be involved in the regulation of plant PIP2-dependent PLDgamma activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号