首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
哺乳动物精子在雌性生殖道内及体外获能培养过程中伴随着胆固醇外流、质膜重组、离子通道调节及获能相关蛋白磷酸化状态改变等相关生理调节过程,其中信号通路及相应信号分子对精子获能及功能修饰起到重要调节作用,成为精子细胞超激活运动及完成受精作用的关键环节。根据近年来的研究报道,对哺乳动物精子获能过程中已知的信号通路、信号分子及调节因子、离子通道、存在的问题及未来研究主要方向进行综述,为精子体外培养及辅助生殖等提供理论参考。  相似文献   

2.
获能期间精子蛋白的酪氨酸磷酸化   总被引:2,自引:0,他引:2  
周思畅  倪崖  石其贤 《生命科学》2006,18(3):285-289
哺乳动物精了获能是精子与卵子成功受精的前提。蛋白酪氨酸磷酸化对精子获能十分重要。精了获能期蛋白酪氨酸磷酸化程度增高与sAC/cAMP/PKA途径、受体酪氨酸激酶途径和非受体蛋白酪氨酸激酶途径调节有关。获能过程中酪氨酸磷酸化蛋白分布于精子细胞的不同区域,蛋白的酪氨酸磷酸化与精子功能密切相关。  相似文献   

3.
获能是精子发生顶体反应以及与卵子结合之前所必需的生理过程.研究发现在精子获能过程中伴随有蛋白质的磷酸化特别是酪氨酸的磷酸化.主要对酪氨酸磷酸化蛋白在精子获能过程中的作用及其存在的部位进行归纳总结,为进一步阐明精子获能分子机制奠定基础.  相似文献   

4.
酪氨酸磷酸化蛋白在体外获能豚鼠精子上的分布与表达   总被引:2,自引:0,他引:2  
为研究豚鼠精子获能过程中蛋白酪氨酸磷酸化的变化规律,将豚鼠精子悬浮于改良的TALP获能培养基中,在5% CO2 孵箱37 ℃培养,以精子与金霉素(CTC) 荧光结合类型为指标评价精子获能状态,用免疫荧光技术和Western blot方法检测酪氨酸磷酸化的蛋白在精子上的分布以及酪氨酸磷酸化水平的变化。结果显示,随着获能的进行,发生蛋白酪氨酸磷酸化的精子占总精子的百分比增加,由未获能前的36%增至获能7h时的92%。酪氨酸磷酸化的蛋白分布变广,由精子头部扩增至精子头部、鞭毛主段和中段。另外,有80,45,40kDa的三种蛋白发生酪氨酸磷酸化,其中40kDa的蛋白酪氨酸磷酸化水平自精子体外培养后呈递增趋势,45kDa的蛋白酪氨酸磷酸化自培养3h后发现并呈递增趋势,而80kDa的蛋白酪氨酸磷酸化水平在精子培养3h时最高,后呈递减趋势。  相似文献   

5.
双酚A(BPA)是一种人工合成的雌激素性化合物,广泛存在于环境中,对哺乳动物内分泌有干扰作用,影响雄性生殖系统功能。本研究以新鲜猪精子、17 ℃保存猪精子以及小鼠精子为对象,采用体外培养方法,利用蛋白免疫印迹(WB)和免疫荧光技术,分析不同浓度BPA(0、0.1、1、10、100 μmol·L-1)暴露对哺乳动物精子蛋白酪氨酸磷酸化的影响及分子机制。结果表明: 低中浓度(0.1、1 μmol·L-1)BPA暴露对新鲜猪获能精子蛋白酪氨酸磷酸化具有显著促进作用,但在高浓度(10、100 μmol·L-1)BPA暴露下,猪获能精子蛋白酪氨酸磷酸化呈现降低趋势。BPA暴露下,小鼠获能精子蛋白酪氨酸磷酸化随BPA浓度的增加而增强,并且BPA影响猪和小鼠精子获能相关酪氨酸磷酸化修饰的蛋白种类不同。表明BPA暴露对哺乳动物精子的影响具有物种特异性。免疫荧光结果显示BPA对精子蛋白酪氨酸磷酸化的影响主要发生在鞭毛的中段和主段。  相似文献   

6.
蛋白质磷酸化是蛋白质翻译后最普遍、最重要的修饰之一,是生物体内一种普通的调节方式,参与调控细胞增殖、信号转导、新陈代谢、肿瘤发生等分子机能,并在精子信号转导和酶合成表达的过程中起重要作用。对精子磷酸化蛋白的研究有助于深入了解精子发生、运输、获能,以及精卵识别的调控机理。因此,在磷酸化蛋白组学的层面上研究精子的各项机能可以为雄性不育更深层的研究提供一条新的道路。  相似文献   

7.
蛋白质磷酸化是生物体中广泛存在的翻译后修饰方式,参与多种过程的调节。精子是高度分化的特殊细胞,不具有转录活性,主要依赖于蛋白质的磷酸化完成精子成熟、分化和受精等过程。因此,对于精子磷酸化蛋白质组学的研究有助于进一步了解精子发生、精子获能、超激活以及精卵识别等过程的调控机制。本文简要综述了精子磷酸化蛋白质组学的研究方法及磷酸化蛋白质组学在精子中的应用,为精子磷酸化蛋白质组学在实际科研应用中提供了理论参考。  相似文献   

8.
精子获能中HCO-3介导的信号转导途径   总被引:2,自引:0,他引:2  
获能是哺乳动物精子受精前必须经历的一个生理过程。获能涉及精子膜性质的改变、Ca2 通道活化、胞内cAMP增加,以及蛋白酪氨酸磷酸化(PTP)等。实验证明,HCO3-在该过程中起重要作用。本文旨在介绍HCO3-介导的cAMP信号转导途径。  相似文献   

9.
哺乳动物的受精过程涉及到精子一系列的功能活动,如精子在雌性生殖道的运行、精子的超活化与获能、顶体反应以及精卵融合等。在精子经历的这一系列过程中,精子功能相关的蛋白质发挥着不可或缺的作用,这些蛋白分子的正常与否与雄性个体的繁殖力高低密切相关,因此精子功能相关的蛋白质能够作为评定哺乳动物精液受精能力的生物标记。文章主要对哺乳动物精子功能相关的蛋白质进行了综述,以阐述相关蛋白分子对精子运动活力、精子获能、顶体反应、透明带穿入和精卵融合等方面的重要作用以及这些蛋白分子在家畜遗传改良上的潜在应用。  相似文献   

10.
精子获能及其发展   总被引:9,自引:0,他引:9  
Shi QX  Yuan YY 《生理科学进展》1998,29(3):243-245
获能是哺乳动物精子受精前必须经历的一个成熟过程,它所需时间因种而导,并具有非均一怀和可逆性,获能涉及精子质膜去获能因子(DF)的去除和膜组分的重新分布,包括膜脂成分的改变,蛋白迁移,受体暴露,钙通道激活,胞内cAMP产生和蛋白酪氨酸磷酸化等,获能的终点是发生顶体反应(AR)并呈现超激活运动(HAM)受精取决于上述变化,并可用金霉素染色法,AR,HAM和穿卵率定量检测获能。  相似文献   

11.
Ejaculated sperm are unable to fertilize an egg until they undergo capacitation. Capacitation results in the acquisition of hyperactivated motility, changes in the properties of the plasma membrane, including changes in proteins and glycoproteins, and acquisition of the ability to undergo the acrosome reaction. In all mammalian species examined, capacitation requires removal of cholesterol from the plasma membrane and the presence of extracellular Ca2+ and HCO3-. We designed experiments to elucidate the conditions required for in vitro capacitation of rat spermatozoa and the effects of Crisp-1, an epididymal secretory protein, on capacitation. Protein tyrosine phosphorylation, a hallmark of capacitation in sperm of other species, occurs during 5 h of in vitro incubation, and this phosphorylation is dependent upon HCO3-, Ca2+, and the removal of cholesterol from the membrane. Crisp-1, which is added to the sperm surface in the epididymis in vivo, is lost during capacitation, and addition of exogenous Crisp-1 to the incubation medium inhibits tyrosine phosphorylation in a dose-dependent manner, thus inhibiting capacitation and ultimately the acrosome reaction. Inhibition of capacitation by Crisp-1 occurs upstream of the production of cAMP by the sperm.  相似文献   

12.
Mammalian sperm acquire fertilization capacity after residing in the female tract during a process known as capacitation. The present study examined whether cholesterol efflux during capacitation alters the biophysical properties of the sperm plasma membrane by potentially reducing the extent of lipid raft domains as analyzed by the isolation of detergent-resistant membrane fractions using sucrose gradients. In addition, this work investigated whether dissociation of the detergent-resistant membrane fraction during capacitation alters resident sperm raft proteins. Mouse sperm proteins associated with such fractions were studied by silver staining, tandem mass spectrometry, and Western blot analysis. Caveolin 1 was identified in sperm lipid rafts in multimeric states, including a high-molecular-weight oligomer that is sensitive to degradation under reducing conditions at high pH. Capacitation resulted in reduction of the light buoyant-density, detergent-resistant membrane fraction and decreased the array of proteins isolated within this fraction, including loss of the high-molecular-weight caveolin 1 oligomers. Proteomic analysis of sperm proteins isolated in the light buoyant-density fraction identified several proteins, including hexokinase 1, testis serine proteases 1 and 2, TEX101, hyaluronidase (PH20, SPAM1), facilitated glucose transporter 3, lactate dehydrogenase A, carbonic anhydrase IV, IZUMO, pantophysin, basigin, and cysteine-rich inhibitory secretory protein 1. Capacitation also resulted in a significant reduction of sperm labeling by the fluorescent lipid-analog DiIC16, indicating that capacitation alters the liquid-ordered domains in the sperm plasma membrane. The observations that capacitation alters the protein composition of the detergent-resistant membrane fractions is consistent with the hypothesis that cholesterol efflux during capacitation dissociates lipid raft constituents, initiating signaling events that lead to sperm capacitation.  相似文献   

13.

Background  

Serum albumin is a key component in mammalian sperm capacitation, a functional maturation process by which sperm become competent to fertilize oocytes. Capacitation is accompanied by several cellular and molecular changes including an increased tyrosine phosphorylation of sperm proteins and a development of hyperactivated sperm motility. Both of these processes require extracellular calcium, but how calcium enters sperm during capacitation is not well understood.  相似文献   

14.
Eight different lectins conjugated to fluorescein isothiocyanate (FITC) were used to screen for sperm plasma membrane changes during in vitro capacitation of bovine sperm. Analysis of lectin binding to sperm was done using flow cytometry. Of the eight lectins, only Triticum vulgaris (wheat germ agglutinin, WGA) binding to sperm was altered with capacitation. Capacitation of bovine sperm by heparin was found to decrease WGA binding to sperm by 78% (P < 0.05). The effect of capacitation by oviduct fluid was next compared with capacitation by heparin for changes in WGA binding to sperm. The effect of inhibiting capacitation with glucose on WGA binding was also determined. WGA-bound sperm were detected by flow cytometry as being present in two fluorescence peaks defined as low fluorescence (A) or high fluorescence (B) intensity. The percentage of sperm in peak A was greater for heparin and oviduct fluid-treated sperm compared to sperm incubated under noncapacitating conditions in only culture medium (P < 0.001). Capacitation with either heparin or oviduct fluid was inhibited by glucose as assessed by the ability of lysophosphatidylcholine (100 μg/ml) to induce acrosome reactions. Glucose also reduced the percentage of sperm in peak A for both heparin- and oviduct fluid-treated sperm (P < 0.01). We conclude that heparin or oviduct fluid induced changes on the sperm plasma membrane during capacitation. Binding sites for WGA on sperm were either structurally altered or lost during capacitation. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Capacitation is an important physiological pre-requisite before the sperm cell can acrosome react and fertilize the oocyte. Recent reports from several laboratories have amply documented that the protein phosphorylation especially at tyrosine residues is one of the most important events that occur during capacitation. In this article, we have reviewed the data from our and other laboratories, and have constructed a heuristic model for the mechanisms and molecules involved in capacitation/acrosome reaction.  相似文献   

16.
Capacitation (activation) of mammalian spermatozoa is accompanied by protein phosphorylation, elevation of the intracellular calcium concentration and an increased plasma membrane fluidity. The subcellular localization of tyrosine phosphorylation during capacitation have not yet been elucidated. The aim of this study was to investigate whether boar sperm capacitation induces tyrosine phosphorylation of plasma membrane proteins. Capacitation induced tyrosine phosphorylation of 3 proteins (27, 37, and 40 kDa), which coincided with an increase in the plasma membrane fluidity. The importance of the induced tyrosine phosphorylation in sperm binding to the zona pellucida and the induction of the acrosome reaction is discussed.  相似文献   

17.
Capacitation of spermatozoa, a complex process occurring after sperm ejaculation, is required to produce fertilization of the oocyte in vivo and in vitro. Although this process results from a poorly understood series of morphological and molecular events, protein tyrosine phosphorylation has been associated with sperm capacitation in several mammalian species, but it still remains to be demonstrated in ram spermatozoa. Studies of capacitation in ram spermatozoa are of great interest, since several reports have suggested that the reduced fertility of cryopreserved spermatozoa is due to their premature capacitation. In this work, we report for the first time, to our knowledge, that tyrosine phosphorylation of ram sperm membrane proteins is related to the capacitation state of these cells. Capacitation induced tyrosine phosphorylation of some plasma membrane proteins of ram spermatozoa freed from seminal plasma by a dextran/swim-up procedure. It has also been proved that cold-shock induces protein tyrosine phosphorylation as well as a decrease in plasma membrane integrity. Addition of seminal plasma proteins prior to cold-shock not only improved sperm survival but also promoted a decrease in protein tyrosine phosphorylation.  相似文献   

18.
Capacitation represents the final maturational steps that render mammalian sperm competent to fertilize, either in vivo or in vitro. Capacitation is defined as a series of events that enables sperm to bind the oocyte and undergo the acrosome reaction in response to the zona pellucida. Although the molecular mechanisms involved are not fully understood, sperm protein phosphorylation is associated with capacitation. The hypothesis of this study is that protein tyrosine phosphorylation and kinase activity mediate capacitation of porcine sperm. Fresh sperm were incubated in noncapacitating or capacitating media for various times. Proteins were extracted with SDS, subjected to SDS-PAGE, and immunoblotted with an antiphosphotyrosine antibody. An M(r) 32 000 tyrosine-phosphorylated protein (designated as p32) appeared only when the sperm were incubated in capacitating medium and concomitant with capacitation as assessed by the ionophore-induced acrosome reaction. The p32 was soluble in Triton X-100. Fractionation of sperm proteins with Triton X-114 demonstrated that after capacitation, this tyrosine phosphoprotein is located in both the cytosol and the membrane. Enzyme renaturation of sperm proteins was conducted in gels with or without either poly glu:tyr (a tyrosine kinase substrate) or kemptide (a protein kinase A substrate). An M(r) 32 000 enzyme with kinase behavior was observed in all gels but was preferentially phosphorylated on tyrosine, as assessed by phosphorimagery and by thin layer chromotography to identify the phosphoamino acids. Indirect immunolocalization showed that the phosphotyrosine residues redistribute to the acrosome during capacitation, which is an appropriate location for a protein involved in the acquisition of fertility.  相似文献   

19.
Prior to fertilization, mammalian spermatozoa need to acquire fertilizing ability (capacitation) in the female reproductive tract. On the other hand, capacitated spermatozoa reversibly lose their capacitated state when treated with seminal plasma (decapacitation). Previously, we demonstrated that a mouse seminal plasma protein, SVS2, is a decapacitation factor and regulates sperm fertilizing ability in vivo. Here, we examined the mechanisms of regulation of fertilizing ability by SVS2. Capacitation appears to be mediated by dynamic changes in lipid rafts since release of the cholesterol components of lipid rafts in the sperm plasma membrane is indispensable for capacitation. When the ejaculated spermatozoa were stained with a cholera toxin subunit B (CTB) that preferably interacts with ganglioside GM1, another member of the lipid rafts, the staining pattern of the sperm was the same as the binding pattern of SVS2. Interestingly, SVS2 and CTB competitively bound to the sperm surface with each other, suggesting that the binding targets of both molecules are the same, that is, GM1. Molecular interaction studies by the overlay assay and the quartz crystal microbalance analysis revealed that SVS2 selectively interacts with GM1 rather than with other gangliosides. Furthermore, external addition of GM1 nullified SVS2-induced sperm decapacitation. Thus, ganglioside GM1 is a receptor of SVS2 and plays a crucial role in capacitation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号