首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Canine liver lysosomes were purified by sucrose discontinuous density gradient centrifugation and then ruptured by sonication to obtain the soluble fraction. This soluble lysosomal fraction, which contained a 25-fold increase in acid phosphatase activity per mg of total protein when compared with the original homogenate, was incubated with a subfraction (1.110 less than d less than 1.210 g/cm3, HDL3) of canine high density lipoproteins (HDL) at pH 3.8. HDL3 proteolysis by lysosomal proteases, measured as the release of peptides and amino acids by the ninhydrin reaction, followed hyperbolic curves with straight lines (r = 0.99) obtained on Lineweaver-Burk plots. Km calculated from the Lineweaver-Burk plot was 635 mug of HDL3 protein per 0.5 ml of incubation mixture. Optimum HDL3 proteolysis was observed from pH 3.8 to 4.5. Incubation with the other subcellular organelle fractions did not result in HDL3 proteolysis. To evaluate the effects of enzyme inhibitors, iodoacetate, p-chloromercuribenzoate (both specific for the endopeptidase, cathepsin B (EC 3.4.22.1)) and pepstatin (specific for the endopeptidase, cathepsin D (EC 3.4.23.5) were tested. Iodoacetate and p-chloromercuribenzoate inhibited HDL3 proteolysis 100% and bovine serum albumin proteolysis 65%. Pepstatin inhibited HDL3 proteolysis 45% and bovine serum albumin proteolysis 70%. The in vitro data presented support the hypothesis that hepatic lysosomes play an important role in HDL3 catabolism in the dog. Furthermore, results obtained from enzyme inhibition studies suggest that a specific lysosomal endopeptidase, cathepsin B, may play the key role in HDL3 proteolysis.  相似文献   

2.
Cathepsin M: a lysosomal proteinase with aldolase-inactivating activity   总被引:3,自引:0,他引:3  
A proteinase, designated cathepsin M, that catalyzes the limited modification and inactivation of fructose 1,6-bisphosphate aldolase (EC 4.1.2.13) and fructose 1,6-bisphosphatase (EC 3.1.3.11) has been partially purified from rabbit liver. On the basis of its molecular size (Mr = 30,000), activation by sulfhydryl compounds and inhibition by leupeptin it has been characterized as a B-type cathepsin, but other properties distinguish it from cathepsins B, L, and H. Approximately 50% of the total cathepsin M activity is associated with membranes prepared from disrupted lysosomes; this fraction of the activity is also expressed by intact lysosomes. In the membrane-bound form the enzyme is active at neutral pH, but the soluble enzyme and the activity eluted from the membranes are maximally active at pH 5.0. Fasting increases the activity of cathepsin M; the increase is almost entirely in the membrane-bound fraction.  相似文献   

3.
《Insect Biochemistry》1991,21(5):457-465
Musca domestica larval midgut display in cells and luminal contents a proteolytic activity with a pH optimum of 3.0–3.5. This activity is abolished by pepstatin and is insensitive to soybean trypsin inhibitor and to sulfhydryl proteinase inhibitors. The acid proteinase occurs in multiple forms with Mr values in the range 40,000–80,000 and with pI values of about 5.5. The proteinase inactivates at 60°C according to apparent first-order kinetics and Lineweaver-Burk plots of its activity against albumin concentration are rectilinear, suggesting that the multiple forms have similar properties. The proteinase reacts slowly with diazoacetylnorleucine plus CuSO4, is stable in alkaline media, is inhibited by dithiothreitol, hydrolyses hemoglobin better than albumin and is virtually not active upon synthetic substrates for pepsin. These properties are similar to those of cathepsin D. The specific activity of the acid proteinase determined by titration with pepstatin is 680 units/mg of proteinase and the KD of the pepstatin-proteinase complex is 1.5 nM at 30°C. The acid proteinase occurs mainly in midgut subcellular fractions characterized by a high specific activity of molybdate-inhibited acid phosphatase and a large number of secretory-like vesicles. It is proposed that the M. domestica midgut acid proteinase is a cathepsin D-like proteinase evolved to function in luminal contents. The lack of ATP activation of the midgut enzyme supports this hypothesis, since ATP is thought to regulate cathepsin D-proteolysis inside lysosomes.  相似文献   

4.
P Metcalf  M Fusek 《The EMBO journal》1993,12(4):1293-1302
Two crystal structures are described for the lysosomal aspartic protease cathepsin D (EC 3.4.23.5). The molecular replacement method was used with X-ray diffraction data to 3 A resolution to produce structures for human spleen cathepsin D and for bovine liver cathepsin D complexed with the 6-peptide inhibitor pepstatin A. The lysosomal targeting region of cathepsin D defined by previous expression studies [Barnaski et al. (1990) Cell, 63, 281-219] is located in well defined electron density on the surface of the molecules. This region includes the putative binding site of the cis-Golgi phosphotransferase which is responsible for the initial sorting step for soluble proteins destined for lysosomes by phosphorylating the carbohydrates on these molecules. Carbohydrate density is visible at both expected positions on the cathepsin D molecules and, at the best defined position, four sugar residues extend towards the lysosomal targeting region. The active site of the protease and the active site cleft substrate binding subsites are described using the pepstatin inhibited structure. The model geometry for human cathepsin D has rms deviations from ideal of bonds and angles of 0.013 A and 3.2 degrees respectively. For bovine cathepsin D the corresponding figures are 0.014 A and 3.3 degrees. The crystallographic residuals (R factors) are 16.1% and 15.8% for the human and inhibited bovine cathepsin D models respectively. The free R factors, calculated with 10% of the data reserved for testing the models and not used for refinement, are 25.1% and 24.1% respectively.  相似文献   

5.
Three acidic glycosidases: beta-galactosidase (beta-GAL, EC 3.2.1.23), alpha-neuraminidase (NEUR, sialidase, EC 3.2.1.18), N-acetylaminogalacto-6-sulfate sulfatase (GALNS, EC 3.1.6.4) and serine carboxypepidase cathepsin A (EC 3.4.16.1) form a functional high molecular weight complex in the lysosomes. The major constituent of this complex is cathepsin A, the so-called "lysosomal protective protein" (PPCA). By forming a multienzyme complex, it protects the glycosidases from rapid intralysosomal proteolysis, and it is also required for the intracellular sorting and proteolytic processing of their precursors. In man, a deficiency of cathepsin A leads to a combined deficiency of beta-GAL and NEUR activities, called "galactosialidosis". Multiple mutations identified in the cathepsin A gene are the molecular basis of this lysosomal storage disease. This review describes the structural organization of the lysosomal high molecular weight multienzyme complex and the importance of the protective protein/cathepsin A in physiology and pathology.  相似文献   

6.
Isolated myelin of bovine spinal cord was found to degrade exogenous myelin basic protein (MBP) at pH 4.4. Electrophoretic peptide patterns were consistent with limited proteolysis of MBP. Some of the proteolytic activity was soluble at increased ionic strength, some remained bound, withstanding extraction at 37°C for up to 12 hr. While being measurable with exogenous MBP, bound protease degraded neither bound MBP nor any other major intrinsic myelin protein. Both soluble and bound protease activity was completely inhibited by pepstatin A. The patterns of limited proteolysis of MBP they produced were identical. Myelin of cerebral white matter also exhibited soluble and bound acid protease activity which was likewise inhibited by pepstatin A. Protease activity of spinal cord and cerebral myelin is therefore suggested to be due to a cathepsin D-like endopeptidase, present in a loosely and tightly bound form. Both forms increased by 50 to 80% in activity when myelin was isolated from mixtures of white and cortical gray matter. While increased soluble activity of myelin is consistent with binding of cathepsin D of lysosomal origin during the isolation of myelin the tightly bound form might point to a principal mechanism through which exogenous proteins may become attached to the myelin sheath in vivo.  相似文献   

7.
Intracellular proteolysis of ingested blood proteins is a crucial physiological process in ticks. In our model tick, Ixodes ricinus, cathepsin L (IrCL1) is part of a gut-associated multi-peptidase complex; its endopeptidase activity is important in the initial phase of haemoglobinolysis. We present the functional and biochemical characterisation of this enzyme. We show, by RNA interference (RNAi), that cathepsin L-like activity that peaks during the slow feeding period of females is associated with IrCL1. Recombinant IrCL1 was expressed in bacteria and yeast. Activity profiling with both peptidyl and physiological protein substrates (haemoglobin and albumin) revealed that IrCL1 is an acidic peptidase with a very low optimum pH (3-4) being unstable above pH 5. This suggests an endo/lysosomal localisation that was confirmed by indirect fluorescence microscopy that immunolocalised IrCL1 inside the vesicles of digestive gut cells. Cleavage specificity determined by a positional scanning synthetic combinatorial library and inhibition profile indicated that IrCL1 has the ligand-binding characteristics of the cathepsin L subfamily of cysteine peptidases. A non-redundant proteolytic function was demonstrated when IrCL1-silenced ticks had a decreased ability to feed compared with controls. The data suggest that IrCL1 may be a promising target against ticks and tick-borne pathogens.  相似文献   

8.
An enzyme present in rat liver lysosomes catalyzes the conversion of neutral rabbit liver fructose 1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) to a form having maximum activity at pH 9.2. The converting enzyme is partly released when lysosomes are subjected to a single freeze-thaw cycle, but a significant fraction tends to remain with the lysosomal membrane fraction even after repeated freezing and thawing. After repeated freezing and thawing hexosaminidase and cathepsin D are also partly membrane-bound, but cathepsins A, B, and C are completely solubilized. The membrane-bound enzymes, unlike those in intact lysosomes, are not cryptic. The converting enzyme activity is inactivated by phenylmethanesulfonyl fluoride, and is almost completely inactive after exposure to iodoacetic acid or tosylamido-2-phenylethyl and N-α-tosyl lysyl chloromethyl ketones. Unlike cathepsin B, it is not inhibited by leupeptin. Converting enzyme is unstable above pH 6.5, and this property also serves to distinguish it from cathepsins B and D. The results suggest that the converting enzyme is not identical to any of the well-characterized cathepsins.  相似文献   

9.
The total mitochondrial fraction of bovine corpus luteum specifically bound [3H]prostaglandin (PG) E1, [3H] PGF, and 125I-labeled human lutropin (hLH) despite very little 5′-nucleotidase activity, a marker for plasma membranes. Since the total mitochondrial fraction isolated by conventional centrifugation techniques contains both mitochondria and lysosomes, it was subfractionated into mitochondria and lysosomes to ascertain the relative contribution of these fractions to the binding. Subfractionation resulted in an enrichment of cytochrome c oxidase (a marker for mitochondria) in mitochondria and of acid phosphatase (a marker for lysosomes) in lysosomes. The lysosomes exhibited little or no contamination with Golgi vesicles, rough endoplasmic reticulum, or peroxisomes as assessed by their appropriate marker enzymes. Subfractionation also re ulted in [3H] PGE1, [3H] PGF, and 125I-labeled hLH binding enrichment with respect to homogenate in lysosomes but not in mitochondria. The lysosomal binding enrichment and recovery were, however, lower than in plasma membranes. The ratios of marker enzyme to binding, an index of organelle contamination, revealed that plasma membrane and lysosomal receptors were intrinsic to these organelles. Freezing and thawing had markedly increased lysosomal binding but had no effect on plasma membrane binding. Exposure to 0.05% Triton X-100 resulted in a greater loss of plasma membrane compared to lysosomal binding. In summary, the above results suggest that lysosomes, but not mitochondria, in addition to plasma membranes, intrinsically contain receptors for PGs and gonadotropins. Furthermore, lysosomes overall contain a greater number of PGs and gonadotropin receptors compared to plasma membranes and these receptors are associated with the membrane but not the contents of lysosomes.  相似文献   

10.
Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) is an important regulator of vesicle trafficking. By generating actin on the surface of intracellular vesicles, WASH is able to directly regulate endosomal sorting and maturation. We report that, in Dictyostelium, WASH is also required for the lysosomal digestion of both phagocytic and autophagic cargo. Consequently, Dictyostelium cells lacking WASH are unable to grow on many bacteria or to digest their own cytoplasm to survive starvation. WASH is required for efficient phagosomal proteolysis, and proteomic analysis demonstrates that this is due to reduced delivery of lysosomal hydrolases. Both protease and lipase delivery are disrupted, and lipid catabolism is also perturbed. Starvation-induced autophagy therefore leads to phospholipid accumulation within WASH-null lysosomes. This causes the formation of multilamellar bodies typical of many lysosomal storage diseases. Mechanistically, we show that, in cells lacking WASH, cathepsin D becomes trapped in a late endosomal compartment, unable to be recycled to nascent phagosomes and autophagosomes. WASH is therefore required for the maturation of lysosomes to a stage at which hydrolases can be retrieved and reused.  相似文献   

11.
Abstract— The limited proteolysis of the bovine neurophysins at acid pH has been studied and the enzyme responsible has been characterized. Only 15 per cent of the catheptic activity in 4-year-old acetone-dried posterior pituitary lobe powder is soluble at pH 4.0. Solubility increases as the age of the powder decreases and the cathepsin is completely soluble in the presence of 1% Triton X-100. Acid proteinase activity in the neurohypophysis is not thiol activated and is inhibited by 3-phenylpyruvic acid. Bovine serum albumin was degraded at only 1 per cent of the rate of haemoglobin but with the same pH optimum (3.7). On this basis the enzyme was identified as cathepsin D. Neurophysin-I is degraded in two stages by cathepsin D; the first product (neurophysin-I′) runs faster and the second product (neurophysin-I″) runs slower than the native protein on starch-gel electrophoresis at pH 8.1. Neurophysin-II is also degraded in two stages; the first product has a higher electrophoretic mobility than the native protein and is identical in mobility with the faster-running component of the so-called neurophysin-M of Hollenberg and Hope (1967b). Prolonged incubation with the cathepsin gives rise to a slower-running component. Neurophysin-C is not attacked by the acid proteinase. Neurophysin-I′ and I″ have been isolated by ion-exchange chromotography. They have the same N-terminal amino acid (alanine) and C-terminal sequence (Ala-Phe-Ser) as the native protein and both bind 8-argininevasopressin. Neurophysin-I′ is identical in amino acid composition with the native protein but neurophysin-I″ has lost one leucine and two aspartic acid residues. Reduction, 14C-alkylation and separation of the fragments by starch-gel electrophoresis shows that the structural and functional integrity of neurophysin-I″ is maintained by the disulphide bonds, even though a tripeptide has been split out of the interior of the molecule. The low molecular weight material produced by catheptic digestion of neurophysin-I has been purified and shown to have a composition of one leucine and two aspartic acid residues. It is suggested that extensive in vivo proteolysis of neurophysin by lysosomal cathepsin, with consequent abolition of hormone-binding ability, is unlikely.  相似文献   

12.
Human cathepsin B is a cysteine protease with many house-keeping functions, such as intracellular proteolysis within lysosomes. Its increased activity and expression have been strongly associated with many pathological processes, including cancers. We present here the design and synthesis of novel derivatives of nitroxoline as inhibitors of cathepsin B. These were prepared either by omitting the pyridine part, or by modifying positions 2, 7, and 8 of nitroxoline. All compounds were evaluated for their ability to inhibit endopeptidase and exopeptidase activities of cathepsin B. For the most promising inhibitors, the ability to reduce extracellular and intracellular collagen IV degradation was determined, followed by their evaluation in cell-based in vitro models of tumor invasion. The presented data show that we have further defined the structural requirements for cathepsin B inhibition by nitroxoline derivatives and provided additional knowledge that could lead to non-peptidic compounds with usefulness against tumor progression.  相似文献   

13.
14.
Human HDL3 (d 1.125−1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products.
  • 1.(1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5–10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12–15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 μM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL.
  • 2.(2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21–1.25 g /ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15–30% lipolysis, the lecithin:cholesterol acyltransferase reactivity of HDL3 was reduced about 30–40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle.
  • 3.(3) The addition of the lecithin:cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin:cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin:cholesterol acyltransferase-induced removal of cellular cholesterol.
  相似文献   

15.
Cathepsin L was capable of destroying rabbit muscle aldolase (d-fructose-1,6-bisphosphate d-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) activity towards the substrate fructase 1,6-bisphosphate. The rate of loss of activity towards this substrate was stimulated (approx. 2-fold) by physiological concentrations of ATP and to a lesser degree by GTP, CTP, UTP, ADP and cyclic AMP, while PPi and Pi decreased the rate of inactivation. Other proteinases (cathepsin B, cathepsin D, trypsin and chymotrypsin) also decreased aldolase activity toward fructose 1,6-bisphosphate more rapidly in the presence of ATP and more slowly in the presence of Pi. Cathepsin L, at higher concentrations, was capable of inactivating aldolase activity towards fructose 1-phosphate and extensively degrading the enzyme; these reactions were not affected by ATP and Pi. The thermostability of aldolase was also unaffected by these ligands. ATP and Pi had no effect on the rates of hydrolysis of other proteins (hemoglobin, bovine serum albumin, casein and azocasein) by cathepsin L. These data indicate that the effects of ATP and Pi was due to interactions of these ligands with aldolase that make the enzyme more vulnerable to limited but not extensive proteolysis; these ligands do not directly affect cathepsin L activity.  相似文献   

16.
We have investigated the degradation of 125I-labeled bovine serum albumin by lysates of rat kidney cortical lysosomes. Maximal degradation of albumin occurred at pH 3.5-4.2, with approximately 70% of the maximal rate occurring at pH 5.0. Degradation was proportional to lysosomal protein concentration (range 100-600 micrograms) and time of incubation (1-5 h). Dithioerythritol (2 mM) stimulated albumin degradation 5- to 10-fold. Albumin degradation was not inhibited by phenylmethanesulfonyl fluoride (1 mM) or EDTA (5 mM), indicating that neither serine nor metalloproteinases are involved to a significant extent. Pepstatin (5 micrograms/ml), an inhibitor of aspartic proteinases, inhibited albumin degradation by approximately 50%. Leupeptin (10 microM) and N-ethylmaleimide (10 mM), inhibitors of cysteine proteinases, decreased albumin degradation by 34 and 65%, respectively. Combinations of aspartic and cysteine proteinase inhibitors produced nearly complete inhibition of albumin degradation. Taken together, these data indicate that aspartic and cysteine proteinases are primarily responsible for albumin degradation by renal cortical lysosomes under these conditions. In keeping with the above data, we have measured high activities of the cysteine proteinases, cathepsins B, H, and L, in cortical tubules, the major site of renal protein degradation. Using the peptidyl 7-amino-4-methylcoumarin (NHMec) substrates (Z-Arg-Arg-NHMec, for cathepsin B; Arg-NHMec for cathepsin H; and Z-Phe-Phe-CHN2-inhibitable hydrolysis of Z-Phe-Arg-NHMec corrected for inhibition of cathepsin B activity for cathepsin L) values obtained were (means +/- SE, mU/mg protein, 1 mU = production of 1 nM product/min, n = 6): cathepsin B, 2.1 +/- 0.34; cathepsin H, 1.35 +/- 0.19; cathepsin L, 14.49 +/- 1.26. In comparison, the activities of cathepsins B, H, and L in liver were: 0.56 +/- 0.03, 0.28 +/- 0.04, and 1.27 +/- 0.16, respectively.  相似文献   

17.
The effects of ATP, vanadate, and molybdate on cathepsin D-catalyzed hydrolysis of proteins and peptides were examined. Hydrolysis of bovine serum albumin, hemoglobin, parathyroid hormone, and a synthetic octapeptide was activated by ATP. Degradation of the protein substrates all had similar ATP concentration dependence, but the magnitude of the activation varied. Kinetic constants for ATP activation were obtained with a synthetic substrate. ATP increased kcat from 0.4 to 2 s-1 but did not change KM. Kact for ATP was 800 microM. Studies with pepstatin-Sepharose confirm that ATP does not alter the substrate binding site on cathepsin D. Pepsin, a homologous aspartate protease, was not activated by ATP. It was also found that vanadate and molybdate inhibit cathepsin D-catalyzed proteolysis. However, this inhibition was dramatically dependent on substrate concentration and was eliminated at high substrate. Hydrolysis of the synthetic peptide was not inhibited at concentrations of molybdate below 50 microM, and above this concentration the peptide precipitated. Protein substrates were also found to precipitate in the presence of molybdate. The ATP dependence of the enzyme was not altered by molybdate or vanadate. These results suggest that inhibition by vanadate and molybdate is related to interactions with the substrate rather than with cathepsin D. It is concluded that ATP activation of cathepsin D may play a physiological role in regulation of proteolysis in lysosomes, but that vanadate and molybdate inhibition of lysosomal proteolysis does not establish ATP dependence.  相似文献   

18.
Oxidation of plasma low-density lipoprotein (oxLDL) generates the lipid peroxidation product 4-hydroxy-2 nonenal (HNE) and also reduces proteolytic degradation of oxLDL and other proteins internalized by mouse peritoneal macrophages in culture. This leads to accumulation of undegraded material in lysosomes and formation of ceroid, a component of foam cells in atherosclerotic lesions. To explore the possibility that HNE contributes directly to the inactivation of proteases, structure-function studies of the lysosomal protease cathepsin B have been pursued. We found that treatment of mouse macrophages with HNE reduces degradation of internalized maleyl bovine serine albumin and cathepsin B activity. Purified bovine cathepsin B treated briefly with 15 microM HNE lost approximately 76% of its protease activity and also developed immunoreactivity with antibodies to HNE adducts in Western blot analysis. After stabilization of the potential Michael adducts by sodium borohydride reduction, modified amino acids were localized within the bovine cathepsin B protein structure by mass spectrometric analysis of tryptic peptides. Michael adducts were identified by tandem mass spectrometry at cathepsin B active site residues Cys 29 (mature A chain) and His 150 (mature B chain). Thus, covalent interaction between HNE and critical active site residues inactivates cathepsin B. These results support the hypothesis that the accumulation of undegraded macromolecules in lysosomes after oxidative damage are caused in part by direct protease inactivation by adduct formation with lipid peroxidation products such as HNE.  相似文献   

19.
The pathways of degradation followed by endogenous proteins in cultured smooth muscle cells were compared with the well-characterized lysosomal pathway involved in the degradation of apolipoprotein B of endocytosed LDL. Under conditions in which lysosomal activity towards 125I-labeled LDL was almost completely inhibited by chloroquine and/or ammonium chloride, the degradation of short-lived and abnormal proteins, assessed by the release of [3H]phenylalanine, was reduced by only 10–17%. The basal rate of degradation of long-lived proteins was reduced by about 30% by the same inhibitors while the accelerated proteolysis found under nutrient-poor conditions could be completely accounted for by the lysosomal system as defined by these lysosomotrophic agents. Temperature studies indicated differences between the mechanisms involved in the degradation of long-lived proteins (Ea = 18 kcal/mol) and short-lived proteins (Ea = 10 kcal/mol). Arrhenius plots for the degradation of endogenous proteins showed no transitions between 15 and 37°C in contrast to the breakdown of LDL which ceased below 20°C. The results indicate that the degradation of rapid-turnover proteins is largely extralysosomal and that a significant breakdown of long-lived proteins occurs also outside lysosomes.  相似文献   

20.
Cathepsin L [EC 3.4.22.15] is secreted via lysosomal exocytosis by several types of cancer cells, including prostate and breast cancer cells. We previously reported that human cultured fibrosarcoma (HT 1080) cells secrete cathepsin L into the medium; this secreted cathepsin is 10-times more active than intracellular cathepsin. This increased activity was attributed to the presence of a 32-kDa cathepsin L in the medium. The aim of this study was to examine how this active 32-kDa cathepsin L is secreted into the medium. To this end, we compared the secreted active 32-kDa cathepsin L with lysosomal cathepsin L by using a novel gelatin zymography technique that employs leupeptin. We also examined the glycosylation and phosphorylation status of the proteins by using the enzymes endoglycosidase H [EC 3.2.1.96] and alkaline phosphatase [EC 3.1.3.1]. Strong active bands corresponding to the 32-kDa and 34-kDa cathepsin L forms were detected in the medium and lysosomes, respectively. The cell extract exhibited strong active bands for both forms. Moreover, both forms were adsorbed onto a concanavalin A-agarose column. The core protein domain of both forms had the same molecular mass of 30 kDa. The 32-kDa cathepsin L was phosphorylated, while the 34-kDa lysosomal form was dephosphorylated, perhaps because of the lysosomal marker enzyme, acid phosphatase. These results suggest that the active 32-kDa form does not enter the lysosomes. In conclusion, our results indicate that the active 32-kDa cathepsin L is secreted directly from the HT 1080 cells and not via lysosomal exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号