首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been recently demonstrated that a complex of avidin, a cationic protein, and a monobiotinylated antisense oligonucleotide for the GLUT1 glucose transporter mRNA is taken up by cells in vitro and by organs in vivo via absorptive-mediated endocytosis. In the present study, a GLUT1 biotinylated oligonucleotide-avidin construct showing complete protection against serum 3'-exonuclease-mediated degradation is described. 21-mer antisense oligonucleotides complementary to nucleotides 162-182 and 161-181 of the bovine GLUT1 glucose transporter mRNA were synthesized with a 6-aminodeoxyuridine at positions 3 and 20, respectively, biotinylated with NHS- or NHS-XX-biotin to yield near 5'- or near 3'-biotinylated oligonucleotide (bio-DNA), and 5'- and 3'-end radiolabeled. Serum induced a rapid degradation of unprotected (no avidin) [5'-32P]-5'-bio-DNA (> 95% at 30 min). Avidin partially protected this construct (approximately 31% of intact 21-mer oligo remained at 1 h). Similar results were obtained with the [3'-32P]-5'-bio-DNA; however, no degradation products of varying size were observed, confirming that the degradation is mediated primarily by a 3'-exonuclease. Incubation of the [5'-32P]-3'-bio-DNA with serum showed a rapid conversion to the 20- and 19-mer forms (t1/2 approximately 13 min). Conversely, avidin totally protected this construct against the serum 3'-exonuclease. In conclusion, avidin fully protects antisense oligonucleotides biotinylated at the near 3'-terminus against serum 3'-exonuclease degradation, and this property may be useful for avidin-mediated drug delivery of oligonucleotides to tissues in vivo or to cultured cells in vitro.  相似文献   

2.
M S Jorns  G B Sancar  A Sancar 《Biochemistry》1985,24(8):1856-1861
Escherichia coli DNA photolyase exhibits the same turnover number (3.4 min-1) for the repair of dimers in oligothymidylates [oligo(dT)n] containing 4-18 thymine residues. This rate is identical with that observed with polythymidylate and with native DNA. The enzyme exhibits a similar high affinity with oligomers containing seven or more thymine residues. A decrease in affinity is detectable with oligo(dT)n when n = 4-6. The enzyme is active with oligo(dT)3, but no evidence for saturation was obtained at dimer concentrations up to 15 microM where the observed repair rate is 43% of the turnover number observed with the higher homologues. Nearly quantitative (90-100%) repair is observed with oligo(dT)n when n is greater than or equal to 9. Photolyase can repair internal dimers and dimers at a 5' end where the terminal ribose is phosphorylated but not at unphosphorylated 5' or 3' ends. The latter can explain a progressive decrease in the extent of repair observed with short-chain oligomers. The observed specificity can also explain why the enzyme is inactive with oligo(dT)2 [p(dT)2] since the only dimer possible in oligo(dT)2 involves an unphosphorylated 3' end. That the enzyme can repair dimers in short-chain, single-stranded analogues for DNA suggests that in catalysis with DNA recognition of the dimer itself is important as opposed to recognition of the deformation in DNA structure produced by the dimer. Dimer repair with oligo(dT)n is detected by the increase in absorbance at 260 nm, a feature which is used as the basis for a rapid spectrophotometric assay with a lower detection limit around 150 pmol of dimer repaired.  相似文献   

3.
Minor adducts, derived from the covalent binding of anti-benzo[a]pyrene-7,8-dihydroxy-9,10-epoxide to cellular DNA, may play an important role in generating mutations and initiating cancer. We have applied a combined NMR-computational approach including intensity based refinement to determine the solution structure of the minor (+)-cis-anti-[BP]dA adduct positioned opposite dT in the d(C1-T2-C3-T4-C5-[BP]A6-C7-T8-T9-C10-C11). (d(G12-G13-A14-A15-G16-T17-G18-A19-G20+ ++-A21-G22) 11-mer duplex. The BP ring system is intercalated toward the 5'-side of the [BP]dA6 lesion site without disrupting the flanking Watson-Crick dC5.dG18 and [BP]dA6.dT17 base pairs. This structure of the (+)-cis-anti-[BP]dA.dT 11-mer duplex, containing a bay region benzo[a]pyrenyl [BP]dA adduct, is compared with the corresponding structure of the (+)-trans-anti-[BPh]dA.dT 11-mer duplex (Cosman et al., Biochemistry 32, 12488-12497, 1993), which contains a fjord region benzo[c]phenanthrenyl [BPh]dA adduct with the same R stereochemistry at the linkage site. The carcinogen intercalates toward the 5'-direction of the modified strand in both duplexes (the adduct is embedded within the same sequence context) with the buckling of the Watson-Crick [BP]dA6.dT17 base pair more pronounced in the (+)-cis-anti-[BP]dA.dT 11-mer duplex compared to its Watson-Crick [BPh]dA.dT17 base pair in the (+)-trans-anti-[BPh]dA.dT 11-mer duplex. The available structural studies of covalent polycyclic aromatic hydrocarbon (PAH) carcinogen-DNA adducts point toward the emergence of a general theme where distinct alignments are adopted by PAH adducts covalently linked to the N(6) of adenine when compared to the N(2) of guanine in DNA duplexes. The [BPh]dA and [BP]dA N(6)-adenine adducts intercalate their polycyclic aromatic rings into the helix without disruption of their modified base pairs. This may reflect the potential flexibility associated with the positioning of the covalent tether and the benzylic ring of the carcinogen in the sterically spacious major groove. By contrast, such an intercalation without modified base pair disruption option appears not to be available to [BP]dG N(2)-guanine adducts where the covalent tether and the benzylic ring are positioned in the more sterically crowded minor groove. In the case of [BP]dG adducts, the benzopyrenyl ring is either positioned in the minor groove without base pair disruption, or if intercalated into the helix, requires disruption of the modified base pair and displacement of the bases out of the helix.  相似文献   

4.
Factor D, a protein purified from rabbit liver that selectively enhances traversal of template oligodeoxythymidine tracts by diverse DNA polymerases, was examined for the sequence specificity of its binding to DNA. Terminally [32P]-labeled oligomers with the sequence 5'-d[AATTC(N)16G]-3', N being dT, dA, dG, or dC, were interacted with purified factor D and examined for the formation of protein-DNA complexes that exhibit retarded electrophoretic mobility under nondenaturing conditions. Whereas significant binding of factor D to 5'-d[AATTC(T)16G]-3' is detected, there is no discernable association between this protein and oligomers that contain 16 contiguous moieties of dG, dA, or dC. Furthermore, factor D does not form detectable complexes with the duplexes oligo(dA).oligo(dT) or poly(dA).poly(dT). The preferential interaction of factor D with single-stranded poly(dT) is confirmed by experiments in which the polymerase-enhancing activity of this protein is protected by poly(dT) against heat inactivation two- and four-fold more efficiently than by poly(dA) or poly(dA).poly(dT), respectively.  相似文献   

5.
6.
7.
DNA polymerase alpha, delta and epsilon can be isolated simultaneously from calf thymus. DNA polymerase delta was purified to apparent homogeneity by a four-column procedure including DEAE-Sephacel, phenyl-Sepharose, phosphocellulose, and hydroxylapatite, yielding two polypeptides of 125 and 48 kDa, respectively. On hydroxylapatite DNA polymerase delta can completely be separated from DNA polymerase epsilon. By KCl DNA polymerase delta is eluted first, while addition of potassium phosphate elutes DNA polymerase epsilon. DNA polymerases delta and epsilon could be distinguished from DNA polymerase alpha by their (i) resistance to the monoclonal antibody SJK 132-20, (ii) relative resistance to N2-[p-(n-butyl)phenyl]-2-deoxyguanosine triphosphate and 2-[p-(n-butyl)anilino]-2-deoxyadenosine triphosphate, (iii) presence of a 3'----5' exonuclease, (iv) polypeptide composition, (v) template requirements, (vi) processivities on the homopolymer poly(dA)/oligo(dT12-18), and (vii) lack of primase. The following differences of DNA polymerase delta to DNA polymerase epsilon were evident: (i) the independence of DNA polymerase epsilon to proliferating cell nuclear antigen for processivity, (ii) utilization of deoxy- and ribonucleotide primers, (iii) template requirements in the absence of proliferating cell nuclear antigen, (iv) mode of elution from hydroxylapatite, and (v) sensitivity to d2TTP and to dimethyl sulfoxide. Both enzymes contain a 3'----5' exonuclease, but are devoid of endonuclease, RNase H, DNA helicase, DNA dependent ATPase, DNA primase, and poly(ADP-ribose) polymerase. DNA polymerase delta is 100-150 fold dependent on proliferating cell nuclear antigen for activity and processivity on poly(dA)/oligo(dT12-18) at base ratios between 1:1 to 100:1. The activity of DNA polymerase delta requires an acidic pH of 6.5 and is also found on poly(dT)/oligo(dA12-18) and on poly(dT)/oligo(A12-18) but not on 10 other templates tested. All three DNA polymerases can be classified according to the revised nomenclature for eukaryotic DNA polymerases (Burgers, P.M. J., Bambara, R. A., Campbell, J. L., Chang, L. M. S., Downey, K. M., Hübscher, U., Lee, M. Y. W. T., Linn, S. M., So, A. G., and Spadari, S. (1990) Eur. J. Biochem. 191, 617-618).  相似文献   

8.
The solution structure of the adduct derived from the covalent bonding of the fjord region (+)-(11S, 12R, 13R, 14S) stereoisomer of anti -11,12-dihydroxy-13,14-epoxy-11,12,13, 14-tetrahydrobenzo[g]chrysene, (+)- anti -B[g]CDE, to the exocyclic N(6)amino group of the adenine residue dA6, (designated (+)- trans-anti -(B[g]C)dA6), positioned opposite a thymine residue dT17 in the DNA sequence context d(C1-T2-C3-T4-C5-(B[g]C)A6-C7-T8-T9-C10-C11). d(G12-G13-A14-A15-G16-T17-G18-A19-G20++ +-A21-G22) (designated (B[g]C)dA. dT 11-mer duplex), has been studied using structural information derived from NMR data in combination with molecular dynamics (MD) calculations. The solution structure of the (+)- trans-anti -(B[g]C)dA.dT 11-mer duplex has been determined using an MD protocol where both interproton distance and dihedral angle restraints deduced from NOESY and COSY spectra are used during the refinement process, followed by additional relaxation matrix refinement to the observed NOESY intensities to account for spin diffusion effects. The results established that the covalently attached benzo[g]chrysene ring intercalates into the DNA helix directed towards the 5'-side of the modified strand and stacks predominantly with dT17 when intercalated between dC5.dG18 and (B[g]C)dA6.dT17 base-pairs. All base-pairs, including the modified (B[g]C)dA6.dT17 base-pair, are aligned through Watson-Crick pairing as in normal B -DNA. In addition, the potential strain associated with the highly sterically hindered fjord region of the aromatic portion of the benzo[g]chrysenyl ring is relieved through the adoption of a non-planar, propeller-like geometry within the chrysenyl ring system. This conformation shares common structural features with the related (+)- trans-anti -(B[c]Ph)dA adduct in the identical base sequence context, derived from the fjord region (+)-(1S,2R,3R,4S)-3, 4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]phenanthrene stereoisomer, in which intercalation is also observed towards the 5'-side of the modified dA6.dT17 base-pair.  相似文献   

9.
10.
Isolated liver nuclei or whole lymph node lymphocytes stimulated with concanavalin A in culture were irradiated with ultraviolet light. The crosslinked structures of poly(A)+ heterogeneous nuclear RNA and protein were purified on oligo(dT)-cellulose after labelling irradiated nuclei in the presence of adenosine 5'-[gamma-32P]triphosphate and analysed by SDS-polyacrylamide gel electrophoresis. The liver and lymphocyte nuclear proteins included about 17-19 species of 35-150 kDa and were shown to produce quite similar electrophoretic band patterns. Two proteins of 110-120 and 40-42 kDa were phosphorylated. Using partial proteolytic digestion the large-size crosslinked phosphoprotein has been identified as the 110 kDa component described previously (Schweiger, A. and Kostka, G. (1984) Biochim. Biophys. Acta 782, 262-268). The 40-42 kDa band was presumably related to the group C species of main proteins associated with heterogeneous nuclear RNA. In crosslinked nuclear structures from rats treated with low doses of alpha-amanitin for 1 h the relative amount of the 110-120 kDa phosphoprotein was reduced while the labelling with [32P]ATP was almost abolished.  相似文献   

11.
12.
Activator 1 (A1) is a multiprotein complex which is essential for proliferating cell nuclear antigen (PCNA)-dependent DNA polymerase delta (pol delta) activity and efficient in vitro DNA synthesis in the SV40 dipolymerase replication system. In this report, we describe the isolation of A1 from HeLa cytosolic extracts. A1 stimulated pol delta activity in singly primed phi X174 DNA or (dA)4500.oligo(dT)12-18 in reactions containing PCNA, single-stranded DNA binding protein (SSB), and ATP. Using this assay, A1 has been extensively purified. Purified preparations contained five discrete subunits of 145, 40, 38, 37, and 36.5 kDa. ATP hydrolysis to ADP and Pi is essential for A1-dependent pol delta activity, and we have shown that A1 contains an intrinsic ATPase which is stimulated by DNA. The DNA-dependent hydrolysis of ATP can be stimulated by PCNA and further activated by PCNA plus the human single-stranded DNA binding protein. These stimulatory effects were observed with (dA)4500.oligo(dT)12-18, but were not detected with each poly-deoxynucleotide alone. Furthermore, A1 formed a complex with (dA)4500.oligo(dT)12-18 which could be measured by nitrocellulose binding. No complex with (dA)4500 or oligo(dT)12-18 alone was detected by this procedure. Data are also presented which indicate that A1, in conjunction with PCNA, functions as a primer-recognition factor for pol delta, increasing its ability to utilize low levels of primer ends, but it does not increase the size of the DNA products. A1 also markedly reduced the amount of PCNA required for pol delta activity on a multiply primed DNA suggesting that PCNA interacts with A1 at the primer end. These multiple effects of A1 closely resemble the properties of the multisubunit protein RF-C described by Tsurimoto and Stillman (Tsurimoto, T., and Stillman, B. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1023-1027).  相似文献   

13.
14.
A gamma-like DNA polymerase devoid of DNA polymerase-alpha and -beta activities was prepared from the nuclear fraction of blastulae of the sea urchin, Hemicentrotus pulcherrimus. The enzyme sedimented at the position of an approximate sedimentation coefficient of 3.3 S under high salt conditions by sucrose gradient centrifugation. An isoelectric point was determined to be pH 5.8. The enzyme activity was sensitive to sulfhydryl blocking reagents. Poly(rA) . oligo(dT)12--18 followed by poly(dA) . oligo(dT)12--18 was effectively utilized as a template-primer. From the above results, this polymerase seems to resemble the vertebrate DNA polymerase-gamma.  相似文献   

15.
Cloning of epoxide hydratase complementary DNA   总被引:4,自引:0,他引:4  
Tightly membrane-bound polysomes were isolated from livers of rats administered trans-stilbene oxide. Epoxide hydratase mRNA was enriched from these polysomes using immunochemical techniques and oligo(dT)-cellulose chromatography. This resulted in an increase in message concentration over that found in noninduced membrane-bound cDNA, synthesized from enriched mRNA, was inserted into the ampicillin resistance gene of pBR322 using oligo(dG)-oligo(dC) tailing. Clones containing sequences complementary to epoxide hydratase mRNA were selected by differential colony hybridization using [32P]cDNA synthesized from immunoenriched mRNA and [32P]cDNA synthesized from nonenriched mRNA. Plasmids from four clones, which only annealed with the enriched probe, were isolated and shown to specifically hybridize with epoxide hydratase mRNA by hybrid selection-translation. A composite restriction endonuclease map of the plasmid inserts was constructed which spanned 1310 base pairs and represented approximately 80% of the message sequence. The 3'-5' orientation of this map relative to the epoxide hydratase mRNA was also determined.  相似文献   

16.
17.
The structure of the 5'-termini has been investigated in mitochondrial DNA-coded poly(A)-containing RNA from HeLa cells. For this purpose, mitochondrial RNA isolated from cells labeled for 3 hours with [32P]orthophosphate in the presence of 20 microgram/ml camptothecin, and selected for poly(A) content by two passages through oligo(dT)-cellulose, was digested either with the nuclease P1 or with a mixture of RNases: the digestion products were then fractionated by two-dimensional electrophoresis. No "cap" structures were detected under conditions where the presence of such structures in one out of five to ten RNA molecules would have been recognized. It is, therefore, likely that "cap" structures are completely absent in HeLa cell mitochondrial poly(A)-containing RNA.  相似文献   

18.
19.
A novel application of a single stranded (ss) oligonucleotide as an active component of polymeric membrane in an ion-selective electrode (ISE) is described. The original oligonucleotides, oligo(dA)(15), modified by cholesterol, triphenylmethyl and hexadecyl derivatives, were immobilized into poly(vinyl chloride) (PVC) membrane using extraction protocol. In parallel, the adsorption protocol was used to immobilize unmodified oligo(dA)(15) on the PVC membrane based on tridodecylmethyammonium chloride (TDDMA(+)Cl(-)). Immobilization of ss oligonucleotide probe through spacer was more effective for the potentiometric detection of the hybridization between complementary oligonucleotides. It was found that cholesterol-oligo(dA)(15) modified membranes were sensitive toward complementary oligo(dT)(15) in the concentration range 2-80 nM at pH 7. An explanation for the detection mechanism is proposed.  相似文献   

20.
Phage T4 polynucleotide kinase (EC 2.7.1.78) proved incapable of catalyzing the phosphorylation of thymidylyl-(3'----5')-thymidine containing either a cis-syn-cyclobutane pyrimidine dimer (d-T less than p greater than T) or a 6-4'-[pyrimidin-2'-one]pyrimidine photoproduct (d-T[p]-T), and similarly the UV-modified compounds of (dT)3 bearing either photoproduct at their 5'-end (d-T less than p greater than TpT and d-T[p]TpT). In contrast, the 3'-structural isomers of these trinucleotides (d-TpT less than p greater than T and d-TpT[p]T) were phosphorylated at the same rate as the parent compound. These phosphorylatable lesion-containing oligonucleotides are quantitatively released from UV-irradiated poly(dA):poly(dT) by enzymatic hydrolysis with snake venom phosphodiesterase and alkaline phosphatase (Liuzzi, M., Weinfeld, M., and Paterson, M. C. (1989) J. Biol. Chem. 264, 6355-6363). By combining this digestion regimen with phosphorylation by polynucleotide kinase and [gamma-32P]ATP, pyrimidine dimers were quantitated at the fmol level following exposure of poly(dA):poly(dT) and herring sperm DNA to biologically relevant UV fluences. The rate of dimer induction in the synthetic polymer, approximately 10 dimers/10(6) nucleotides/Jm-2, was in close agreement with that obtained by conventional methods. Dimers were induced at one-fourth of this rate in the natural DNA. Further treatment of the phosphorylated oligonucleotides derived from irradiated herring sperm DNA with nuclease P1 released the labeled 5'-nucleotide, thus permitting analysis of the nearest-neighbor bases 5' to the lesions. We observed a ratio for pyrimidine-to-purine bases of almost 6:1, implicating tripyrimidine stretches as hotspots for UV-induced DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号