首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational change in the α subunit of Escherichia coli proton-translocating ATPase was studied using trypsin. The subunit was cleaved with a small amount of trypsin (1 μg/mg subunit) to peptides of less than 8000 daltons. On the other hand, the subunit was cleaved to two main polypeptides (30,000 and 25,000 daltons) in the presence of sufficient ATP (1 mm-0.5 μm) to saturate the high-affinity site of the subunit. Analysis of digests of the subunit combined with fluorescent maleimide suggested that the subunit was digested in the middle of the polypeptide chain in the presence of the nucleotide. ADP and adenylyl imidodiphosphate had the same effect as ATP. These results suggest that the conformation of the subunit changed to form two trypsin-resistant domains upon binding of ATP to the high-affinity site.  相似文献   

2.
F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.  相似文献   

3.
Nicotinic acetylcholine receptors (nAChRs) are involved in fast synaptic transmission in the central and peripheral nervous system. Among the many different types of subunits in nAChRs, the β2 subunit often combines with the α4 subunit to form α4β2 pentameric channels, the most abundant subtype of nAChRs in the brain. Besides computational predictions, there is limited experimental data available on the structure of the β2 subunit. Using high-resolution NMR spectroscopy, we solved the structure of the entire transmembrane domain (TM1234) of the β2 subunit. We found that TM1234 formed a four-helix bundle in the absence of the extracellular and intracellular domains. The structure exhibited many similarities to those previously determined for the Torpedo nAChR and the bacterial ion channel GLIC. We also assessed the influence of the fourth transmembrane helix (TM4) on the rest of the domain. Although secondary structures and tertiary arrangements were similar, the addition of TM4 caused dramatic changes in TM3 dynamics and subtle changes in TM1 and TM2. Taken together, this study suggests that the structures of the transmembrane domains of these proteins are largely shaped by determinants inherent in their sequence, but their dynamics may be sensitive to modulation by tertiary and quaternary contacts.  相似文献   

4.
Previous studies on the activity of the rice Gα promoter using a β-Glucuronidase (GUS) reporter construct indicated that Gα expression was highest in developing organs and changed in a developmental stage-dependent manner. In this paper, GUS activity derived from the rice Gα promoter was analyzed in seeds and developing leaves. In seeds, GUS activity was detected in the aleurone layer, embryo, endosperm and scutellar epithelium. In developing leaves, the activity was detected in the mesophyll tissues, phloem and xylem of the leaf sheath and in the mesophyll tissue of the leaf blade. The activity in the aleurone layer and scutellar epithelium suggests that the Gα subunit may be involved in gibberellin signaling. The activity in the mesophyll tissues of the leaf blade suggests that the Gα subunit may be related to the intensity of disease resistance. The pattern of the activity in the developing leaf also indicates that the expression of Gα follows a developmental profile at the tissue level.Key words: expression pattern, Gα subunit, GUS staining pattern, heterotrimeric G protein, riceThe rice mutant d1 is deficient in the heterotrimeric G protein α subunit (Gα). Recently it was found that the dwarfism phenotype of d1 is due to a reduction in cell numbers.1 This discovery has led to new questions regarding how rice Gα regulates cell number, and which other signaling molecules are involved in this process in various tissues and at different development stages. Studies of d1 suggest that rice Gα participates in both gibberellin signaling24 and brassinosteroid signaling.58 Promoter studies using the β-Glucuronidase (GUS) reporter indicate that Gα expression is highest in developing organs.1 In this paper, we report on the expression pattern of a Gα promoter::GUS construct in seeds and developing leaves of rice.  相似文献   

5.
The C-terminus of the G protein α subunit has a well-known role in determining the selective coupling with the cognate G protein-coupled receptor (GPCR). In fact, rhodopsin, a prototypical GPCR, exhibits active state [metarhodopsin II (MII)] stabilization by interacting with G protein [extra formation of MII (eMII)], and the extent of stabilization is affected by the C-terminal sequence of Gα. Here we examine the relationship between the amount of eMII and the activation efficiency of Gi mutants whose Giα forms have different lengths of the C-terminal sequence of Goα. The results show that both the activation efficiencies of Gi and the amounts of eMII were affected by mutations; however, there was no correlation between them. This finding suggested that the C-terminal region of Gα not only stabilizes MII (active state) but also affects the nucleotide-binding site of Gα. Therefore, we measured the activation efficiency of these mutants by MII at several concentrations of GDP and GTP and calculated the rate constants of GDP release, GDP uptake, and GTP uptake. These rate constants of the Gi mutants were substantially different from those of the wild type, indicating that the replacement of the amino acid residues in the C-terminus alters the affinity of nucleotides. The rate constants of GDP uptake and GTP uptake showed a strong correlation, suggesting that the C-terminus of Giα controls the accessibility of the nucleotide-binding site. Therefore, our results strongly suggest that there is a long-range interlink between the C-terminus of Giα and its nucleotide-binding site.  相似文献   

6.
Phosphorylation of theα subunit of the sodium channel by protein kinase C   总被引:5,自引:0,他引:5  
The alpha subunit of the purified voltage-sensitive sodium channel from rat brain is rapidly phosphorylated to the extent of 3-4 mol phosphate/mol by purified protein kinase C. The alpha subunit of the native sodium channel in synaptosomal membranes is also phosphorylated by added protein kinase C as assessed by specific immunoprecipitation and polyacrylamide gel electrophoresis of labeled membranes. Our results suggest coordinate regulation of sodium channel phosphorylation state by cAMP-dependent and calcium/phospholipid-dependent protein kinases.  相似文献   

7.
The dimeric rabbit muscle isozyme of creatine kinase (MM) is modified by iodoacetamide to produce the inactive dimer (M'M') and then hybridized with native dimeric brain isozyme (BB). The hybrid enzyme (M'B), as isolated by PAGE, has the same Km for both ATP and creatine but half the specific activity of the brain isozyme (BB). Likewise, the hybrid of the modified brain with the native muscle isozyme (MB') has half the activity of the native muscle enzyme. The M'B, MB' and MB hybrid dimers all have essentially the same electrophoretic properties, and their intrinsic fluorescence and CD spectra in the far-ultraviolet region are very similar to those of the homodimers MM and BB. Similar results were obtained for the hybrid (M"B) containing the muscle enzyme subunit modified at both the thiol group with iodoacetamide and the Trp residue with dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide and the native brain enzyme submit. The above results suggest strongly the independent catalytic function of the subunit of creatine kinase.  相似文献   

8.
In contrast to the well-characterized spinach ( Spinacea oleracea) chloroplast ATP synthase (CF1–CFo), the properties of the chloroplast ATP synthase from pea (Pisum sativum ) have not been as intensively studied. Preliminary data suggested that the regulatory properties of the two enzymes differ. In the absence of activating treatments the ATPase activity of pea thylakoids in the dark was higher than that in spinach thylakoids. When assayed in the presence of sulfite, the MgATPase activity of pea thylakoids was inhibited to a maximum of 67% by tentoxin, indicating that the dark ATPase activity is in part catalyzed by CF1–CFo. The ATPase activity of purified pea CF1 was also higher than that of spinach CF1 in the absence of activating treatments. These differences could result from the different regulatory properties of the pea or subunit or both. The pea subunit was less effective in binding to or inhibiting the ATPase activity of pea o r spinach CF1 deficient in (CF1-). Spinach inhibited the ATPase activity of pea CF1- at lower concentrations than pea . The gene encoding the pea subunit was cloned and over-expressed. Recombinant pea did not restore low proton permeability to spinach thylakoid membranes reconstitituted with spinach CF1-, although pea was effective when tested with pea thylakoids reconstitituted with pea CF1-. These results confirm earlier suggestions that the C-terminal region of is important in -CF1 and -CFo interactions.  相似文献   

9.
Escherichia coli DNA polymerase III holoenzyme (HE) contains a core polymerase consisting of three subunits: α (polymerase), ε (3'-5' exonuclease), and θ. Genetic experiments suggested that θ subunit stabilizes the intrinsically labile ε subunit and, furthermore, that θ might affect the cellular amounts of Pol III core and HE. Here, we provide biochemical evidence supporting this model by analyzing the amounts of the relevant proteins. First, we show that a ΔholE strain (lacking θ subunit) displays reduced amounts of free ε. We also demonstrate the existence of a dimer of ε, which may be involved in the stabilization of the protein. Second, θ, when overexpressed, dissociates the ε dimer and significantly increases the amount of Pol III core. The stability of ε also depends on cellular chaperones, including DnaK. Here, we report that: (i) temperature shift-up of ΔdnaK strains leads to rapid depletion of ε, and (ii) overproduction of θ overcomes both the depletion of ε and the temperature sensitivity of the strain. Overall, our data suggest that ε is a critical factor in the assembly of Pol III core, and that this is role is strongly influenced by the θ subunit through its prevention of ε degradation.  相似文献   

10.
Zeng X  Ni Z  Shi X  Wei J  Shen Y 《Photosynthesis research》2005,83(3):307-315
The previous work in our lab showed that the spinach chloroplast ATP synthase ε mutant with 3 amino acid residues deleted from the N-terminus had much lower ability to inhibit ATP hydrolysis and block proton leakage in comparison to a mutant with 1 or 2 residues deleted from the N-terminus. The present study aimed at determining whether there is special importance in the structure and function of the N-terminal third residue of the chloroplast ε subunit. The leucine residue at the N-terminal third site (Leu3) of the spinach chloroplast ε subunit was replaced with Ile, Phe, Thr, Arg, Glu or Pro by site-directed mutagenesis, forming mutants εL3I, εL3F, εL3T, εL3R, εL3E and εL3P, respectively. These ε variants all showed lower abilities to inhibit ATP hydrolysis and to block proton leakage, as compared to the wild type ε subunit (εWT). The abilities of mutants εL3I and εL3F to restore the ATP synthesis activity of reconstituted membranes were higher than those of εWT, but the abilities of the other ε variants were lower than that of εWT. These results indicate that the hydrophobic and neutral characteristics of Leu3 of the chloroplast ε subunit are very important for its ability to inhibit ATP hydrolysis and block proton leakage, and for the ATP synthesis ability of ATP synthase.  相似文献   

11.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M74721.  相似文献   

12.
The carboxyl terminal of the L-type calcium channel 1C subunit comprises approximately one third of the primary structure of the 1 subunit (> 700 amino acids residues). This region is sensitive to limited posttranslational processing. In heart and brain the 1C subunits are found to be truncated but the C-terminal domain remains functionally present. Based on our previous data we hypothesized that the distal C-terminus (approximately residues 1650–1950) harbors an important, predominantly inhibitory domain. We generated C-terminal-truncated 1C mutants, and after expressing them in combination with a 3 subunit in HEK-293 cells, electrophysiological experiments were carried out. In order to dissect the important inhibitory part of the C-terminus, trypsin was dialyzed into the cells. The data provide evidence that there are multiple residues within the inhibitory domain that are crucial to the inhibitory process as well as to the enhancement of expressed current by intracellular application of proteases. In addition, the expression of the chimeric mutant 1C1673-DRK1 demonstrated that the C-terminal is specific for the heart channel.  相似文献   

13.
The Epithelial Na(+) Channel (ENaC) is an apical heteromeric channel that mediates Na(+) entry into epithelial cells from the luminal cell surface. ENaC is activated by proteases that interact with the channel during biosynthesis or at the extracellular surface. Meprins are cell surface and secreted metalloproteinases of the kidney and intestine. We discovered by affinity chromatography that meprins bind γ-ENaC, a subunit of the ENaC hetero-oligomer. The physical interaction involves NH(2)-terminal cytoplasmic residues 37-54 of γ-ENaC, containing a critical gating domain immediately before the first transmembrane domain, and the cytoplasmic COOH-terminal tail of meprin β (residues 679-704). This potential association was confirmed by co-expression and co-immunoprecipitation studies. Functional assays revealed that meprins stimulate ENaC expressed exogenously in Xenopus oocytes and endogenously in epithelial cells. Co-expression of ENaC subunits and meprin β or α/β in Xenopus oocytes increased amiloride-sensitive Na(+) currents approximately two-fold. This increase was blocked by preincubation with an inhibitor of meprin activity, actinonin. The meprin-mediated increase in ENaC currents in oocytes and epithelial cell monolayers required meprin β, but not the α subunit. Meprin β promoted cleavage of α and γ-ENaC subunits at sites close to the second transmembrane domain in the extracellular domain of each channel subunit. Thus, meprin β regulates the activity of ENaC in a metalloprotease-dependent fashion.  相似文献   

14.
This study reports a novel splice variant form of the voltage-dependent calcium channel 2 subunit (2g). This variant is composed of the conserved amino-terminal sequences of the 2a subunit, but lacks the -subunit interaction domain (BID), which is thought essential for interactions with the 1 subunit. Gene structure analysis revealed that this gene was composed of 13 translated exons spread over 107 kb of the genome. The gene structure of the 2 subunit was similar in exon-intron organization to the murine 3 and human 4 subunits. Electrophysiological evaluation revealed that 2a and 2g affected channel properties in different ways. The 2a subunit increased the peak amplitude, but failed to increase channel inactivation, while 2g had no significant effects on either the peak current amplitude or channel inactivation. Other subunits, such as 3 and 4, significantly increased the peak current and accelerated current inactivation.  相似文献   

15.
16.
17.
To provide information on the roles of the different forms of ADP-glucose pyrophosphorylase (AGPase) in barley (Hordeum vulgare) endosperm and the nature of the genes encoding their subunits, a mutant of barley, Ris? 16, lacking cytosolic AGPase activity in the endosperm was identified. The mutation specifically abolishes the small subunit of the cytosolic AGPase and is attributable to a large deletion within the coding region of a previously characterized small subunit gene that we have called Hv.AGP.S.1. The plastidial AGPase activity in the mutant is unaffected. This shows that the cytosolic and plastidial small subunits of AGPase are encoded by separate genes. We purified the plastidial AGPase protein and, using amino acid sequence information, we identified the novel small subunit gene that encodes this protein. Studies of the Ris? 16 mutant revealed the following. First, the reduced starch content of the mutant showed that a cytosolic AGPase is required to achieve the normal rate of starch synthesis. Second, the mutant makes both A- and B-type starch granules, showing that the cytosolic AGPase is not necessary for the synthesis of these two granule types. Third, analysis of the phylogenetic relationships between the various small subunit proteins both within and between species, suggest that the cytosolic AGPase single small subunit gene probably evolved from a leaf single small subunit gene.  相似文献   

18.
Effect of ε subunit on the nucleotide binding to the catalytic sites of F1-ATPase from the thermophilic Bacillus PS3 (TF1) has been tested by using α3β3γ and α3β3γε complexes of TF1 containing βTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the ε subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the ε subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.  相似文献   

19.
Numerous genetic studies have provided compelling evidence to establish DNA polymerase ɛ (Polɛ) as the primary DNA polymerase responsible for leading strand synthesis during eukaryotic nuclear genome replication. Polɛ is a heterotetramer consisting of a large catalytic subunit that contains the conserved polymerase core domain as well as a 3′  5′ exonuclease domain common to many replicative polymerases. In addition, Polɛ possesses three small subunits that lack a known catalytic activity but associate with components involved in a variety of DNA replication and maintenance processes. Previous enzymatic characterization of the Polɛ heterotetramer from budding yeast suggested that the small subunits slightly enhance DNA synthesis by Polɛ in vitro. However, similar studies of the human Polɛ heterotetramer (hPolɛ) have been limited by the difficulty of obtaining hPolɛ in quantities suitable for thorough investigation of its catalytic activity. Utilization of a baculovirus expression system for overexpression and purification of hPolɛ from insect host cells has allowed for isolation of greater amounts of active hPolɛ, thus enabling a more detailed kinetic comparison between hPolɛ and an active N-terminal fragment of the hPolɛ catalytic subunit (p261N), which is readily overexpressed in Escherichia coli. Here, we report the first pre-steady-state studies of fully-assembled hPolɛ. We observe that the small subunits increase DNA binding by hPolɛ relative to p261N, but do not increase processivity during DNA synthesis on a single-stranded M13 template. Interestingly, the 3′  5′ exonuclease activity of hPolɛ is reduced relative to p261N on matched and mismatched DNA substrates, indicating that the presence of the small subunits may regulate the proofreading activity of hPolɛ and sway hPolɛ toward DNA synthesis rather than proofreading.  相似文献   

20.

Activin E, a member of the TGF-β super family, is a protein dimer of mature inhibin βE subunits. Recently, it is reported that hepatic activin E may act as a hepatokine that alter whole body energy/glucose metabolism in human. However, orthologues of the activin E gene have yet to be identified in lower vertebrates, including fish. Here, we cloned the medaka (Oryzias latipes) activin E cDNA from liver. Among all the mammalian inhibin β subunits, the mature medaka activin E amino acid sequence shares the highest homology with mammalian activin E. Recombinant expression studies suggest that medaka activin E, the disulfide–bound mature form of mature inhibin βE subunits, may exert its effects in a way similar to that in mammals. Although activin E mRNA is predominantly expressed in liver in mammals, it is ubiquitously expressed in medaka tissues. Since expression in the liver was enhanced after a high fat diet, medaka activin E may be associated with energy/glucose metabolism, as shown in mice and human.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号