首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of antibody stabilized phosphatidylethanolamine (PE) immunoliposomes with Herpes Simplex virus (HSV) and virus infected cells were studied by detecting the immune-dependent lysis of liposomes. Employing PE immunoliposomes bearing anti-HSV glycoprotein D (gD) IgG, immune-specificity of these liposomes were documented by the sole ability of HSV and the HSV-infected L cells to induce immunoliposome lysis. In addition, inhibition of PE immunoliposome lysis by free anti-gD IgG, but not anti-HSV glycoprotein B IgG, indicated the target antigen specificity of these immunoliposomes. Based on these observations, alkaline phosphate encapsulated PE liposomes were used to directly detect HSV in fluid phase. This immunoliposome assay which does not require washing was shown to be very rapid and sensitive: 35pfu of HSV-1 in 5ul could be detected within 1.5hr.  相似文献   

2.
Interactions between target-sensitive (TS) immunoliposomes and herpes simplex virus (HSV) were investigated. Target sensitivity of phosphatidylethanolamine (PE) immunoliposomes is a result of the ability of acylated monoclonal anti-HSV glycoprotein D (gD) to stabilize the bilayer phase of PE, whereas by itself, PE does not form stable liposomes (Ho, R. J. Y., Rouse, B. T., and Huang, L. (1986) Biochemistry 25, 5500-5506). Upon binding of these immunoliposomes to HSV antigen-containing gD, destabilization of PE immunoliposomes was observed. By encapsulating either a self-quenching fluorescent dye, calcein, or alkaline phosphatase inside the liposomal compartment, the HSV-induced destabilization of TS immunoliposomes was shown to be target-specific. Neither Sendai, Semliki Forest, nor Sindbis virus could significantly destabilize the TS immunoliposomes. Moreover, HSV-induced liposome destabilization could be inhibited by free anti-gD (the same antibody used in TS immunoliposomes) but not by monoclonal anti-HSV glycoprotein B, indicating that the interaction was antigen-specific. Destabilization could also be induced by binding to truncated gD (tgD), but only when in a multivalent form immobilized on latex beads. Truncated gD is a cloned, 312-amino acid fragment of HSV-gD that lacks the transmembrane segment. Preincubation of soluble tgD with the TS immunoliposomes failed to induce destabilization and, in addition, abolished the tgD-bead-induced destabilization. This finding strongly indicated that multivalent binding is essential for TS immunoliposome destabilization. Using alkaline phosphatase encapsulated in the liposomes, TS immunoliposomes could be used to detect HSV in fluid phase with 50% signal recorded at 5 microliters of 3.2 x 10(3) pfu/ml; at least 10-fold more sensitive than the standard double-antibody sandwich enzyme-linked immunosorbent assay. The interactions described here may be useful in designing a homogeneous and sensitive immunoliposome assay.  相似文献   

3.
The bilayer phase of dioleoylphosphatidylethanolamine (PE) can be stabilized with palmitoyl-IgG monoclonal antibody to the glycoprotein gD of the herpes simplex virus (HSV). Interactions of PE immunoliposomes with the target virions were characterized by analyzing the kinetics of lipid mixing, by liposomal content release, and by ultrastructural studies. As revealed by a resonance energy transfer assay, lipid mixing between PE immunoliposomes and virions was very rapid, with a second-order rate constant (kapp) of 0.173 (min)-1 (microgram/mL virus)-1. In comparison, content release from PE immunoliposomes was much slower and exhibited multiple-phase, mixed-order kinetics, indicating that liposome destabilization involved fusion of liposomes with HSV. The extent and the apparent rate of liposome destabilization were strongly dependent on liposome concentration. This was evident by the fact that only one to two liposomes were destabilized by each virus particle at low liposome concentration (0.1 microM). For higher liposome concentrations (1-10 microM), this value was 35-104. This finding implies that collision among the virus-bound liposomes is essential for the eventual collapse of PE immunoliposomes to form the hexagonal (HII) equilibrium phase which was observed using freeze-fracture electron microscopy. Studies employing soluble gD, immobilized on latex beads, indicated that a multivalent antigen source is essential for PE immunoliposome destabilization. Immediately after liposome-virus binding, fusion of liposome with the viral membrane then follows. Upon growth of the fusion complexes, which increase to 35-104 liposomes for each virus, an eventual collapse of the structure results, driving PE to its equilibrium structure of HII phase.  相似文献   

4.
Destabilization of liposomes composed of phosphatidylethanolamine (PE) and purified glycophorin of human erythrocytes was studied with the release of an entrapped fluorescent dye, calcein. Proteolytic cleavage of liposomes by trypsin induced a rapid increase of turbidity and the leakage of calcein from the liposomes. Kinetic experiments indicated that the destabilization was a second order reaction, i.e. it required liposome collision. Using N-(7-nitro-2,1,3-benzoxadiazol-4-yl) PE as a fluorescent probe for the formation of hexagonal phase of PE, tryptic digestion of the liposomes resulted in a higher tendency of the PE bilayer to transform into the hexagonal phase. We propose that hexagonal (or inverted micellar) structures are involved in the trypsin induced liposome destabilization.  相似文献   

5.
P Pinnaduwage  L Huang 《Biochemistry》1992,31(11):2850-2855
Interaction of immunoliposomes composed of dioleoylphosphatidylethanolamine (DOPE) (80%), dioleoylphosphatidic acid (DOPA) (20%), and a small amount of specific antibody with Herpes Simplex virus (HSV) were studied by detecting the immune-dependent lysis of liposomes. DOPA was used as the principal stabilizer of the immunoliposomes. Antibodies conjugated with N-glutarylphosphatidylethanolamine or oxidized GM1 served as the target-specific ligands of immunoliposomes. These immunoliposomes (d = 160-180 nm) were stable for at least one month when stored at 4 degrees C. However, they undergo a rapid aggregation and lysis reaction in the presence of a membrane-bound target such as intact HSV virions. We have also employed epitope peptide-containing liposomes (target liposomes) to mimic the virus and showed that the immunoliposomes could be aggregated and lysed by the target liposomes in an antigen-dependent manner. Immunoliposome lysis could be accelerated by increasing the incubation temperature to 60-70 degrees C. No immunoliposome lysis was observed if the target liposomes were absent, indicating the prolonged stability of the immunoliposomes. Liposome lysis was always accompanied by liposome aggregation. However, the aggregation-induced liposome destabilization is unique to the HII phase-forming lipids such as DOPE. DOPC-containing immunoliposomes did not lyse despite the fact that massive liposome aggregation had taken place.  相似文献   

6.
A novel type of liposome bilayer destabilization catalyzed by the enzyme, beta-galactosidase, is described. Unsaturated phosphatidylethanolamine (PE), an HII-phase-forming lipid, does not form stable liposomes at physiological temperature and pH. However, stable unilamellar liposomes can be prepared by mixing PE with a minimum of 5 mol% ganglioside GM1, a micellar-phase-forming lipid. Treatment of these GM1/PE liposomes with beta-galactosidase induces a rapid leakage (3-6 min) of the entrapped fluorescent dye, calcein. The studies indicate that liposome destabilization is the result of catalytic degradation of GM1, rather than a stoichiometric binding of GM1 by beta-galactosidase. Kinetic data indicate that the destabilization takes place via liposome collision. This simple, rapid method of liposome destabilization by beta-galactosidase will be useful in designing a liposome-based signal amplification mechanism for assays involving enzymes.  相似文献   

7.
Antibody-directed liposomes (immunoliposomes) are frequently used for targeted drug delivery. However, delivery of large biotherapeutic molecules (i.e. peptides, proteins, or nucleic acids) with immunoliposomes is often hampered by an inefficient cytosolic release of entrapped macromolecules after target cell binding and subsequent endocytosis of immunoliposomes. To enhance cytosolic drug delivery from immunoliposomes present inside endosomes, a pH-dependent fusogenic peptide (diINF-7) resembling the NH(2)-terminal domain of influenza virus hemagglutinin HA-2 subunit was used. Functional characterization of this dimeric peptide showed its ability to induce fusion between liposome membranes and leakage of liposome-entrapped compounds when exposed to low pH. In a second series of experiments, diINF-7 peptides were encapsulated in immunoliposomes to enhance the endosomal escape of diphtheria toxin A chain (DTA), which inhibits protein synthesis when delivered into the cytosol of target cells. Immunoliposomes targeted to the internalizing epidermal growth factor receptor on the surface of ovarian carcinoma cells (OVCAR-3) and containing encapsulated DTA did not show any cytotoxicity toward OVCAR-3 cells. Cytotoxicity was only observed when diINF-7 peptides and DTA were co-encapsulated in the immunoliposomes. Thus, diINF-7 peptides entrapped inside liposomes can greatly enhance cytosolic delivery of liposomal macromolecules by pH-dependent destabilization of endosomal membranes after cellular uptake of liposomes.  相似文献   

8.
D V Kalvakolanu  A Abraham 《BioTechniques》1991,11(2):218-22, 224-5
Antibodies specific to avian myeloblastosis virus envelope glycoprotein gp80 were raised. Immunoliposomes were prepared using anti-avian myeloblastosis virus envelope glycoprotein gp80 antibody. The antibody was palmitoylated to facilitate its incorporation into lipid bilayers of liposomes. The fluorescence emission spectra of palmitoylated IgG have exhibited a shift in emission maximum from 330 to 370 nm when it was incorporated into the liposomes. At least 50% of the incorporated antibody molecules were found to be oriented towards the outside in the liposomes. The average size of the liposome was found to be 300 A, and on an average, 15 antibody molecules were shown to be present in a liposome. When adriamycin encapsulated in immunoliposomes was incubated in a medium containing serum for 72 h, about 75% of the drug was retained in liposomes. In vivo localization studies, revealed an enhanced delivery of drug encapsulated in immunoliposomes to the target tissue, as compared to free drug or drug encapsulated in free liposomes. These data suggest a possible use of the drugs encapsulated in immunoliposomes to deliver the drugs in target areas, thereby reducing side effects caused by antiviral agents.  相似文献   

9.
The vesicle-to-micelle transition of immunoliposomes formed by dioleoylphosphatidyl-ethanolamine (DOPE) and palmitoyl-immunoglobulin G (p-IgG) was investigated in the presence of bile salts and conjugated bile salts. Turbidity and the release of calcein from liposomes were measured as a function of the amount of bile salts added and compared with the solubilizing profiles of the salts according to the number and configurational state of hydroxy groups in the cholate. The solubilizing phenomena by bile salts conjugated with glycine or taurine were investigated in comparison with non-conjugated bile salts. The solubilizing effect of bile salts on the bilayer of immunoliposomes increased remarkably with the number of hydroxy groups, but was not influenced by the configurational state of the hydroxy group. The half-maximal concentration of bile salts, defined as the concentration giving the half-maximum turbidity of liposome solutions, decreased with hydrophobicity in the phosphatidylcholine (PC) bilayer. The increase in the hydrophobicity of bile salts induces the ability to permeabilize and solubilize phospholipid vesicles. In the case of PC or PE liposome bilayers with inserted protein, bile salts conjugated with taurine or glycine had lower hydrophobicity than non-conjugated bile salts and showed a lower half-maximal concentration. The conjugated bile salts are believed to interact with lipids and solubilize the bilayers, while the head groups of bile salts interact with the inserted protein and extract it from the lipid bilayer.  相似文献   

10.
Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes   总被引:3,自引:0,他引:3  
C Y Wang  L Huang 《Biochemistry》1989,28(24):9508-9514
We have previously shown that pH-sensitive immunoliposomes can mediate a target-specific delivery of plasmid DNA to tumor cells grown in a mouse model [Wang, C.-Y., & Huang, L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 7851-7855]. The efficiency of delivery in terms of the target cell transformation frequency has now been characterized for both short- and long-term gene expression in a tissue culture system. Herpes simplex virus thymidine kinase (TK) gene was used as a reporter gene. It was placed under the control of the promoter for the rat phosphoenolpyruvate carboxykinase gene, which contains a cAMP regulatory element. Therefore, the expression of the exogenous gene in the target cell, mouse Ltk- cells, can be regulated by cAMP drugs. The plasmid DNA was encapsulated in liposomes using a detergent dialysis method. The efficiency of gene delivery was optimized with respect to the time course and dose of liposome-associated DNA. The existence of antibody of the liposomes was essential for the maximal level of DNA delivery. Delivery was also dependent on the lipid composition of the liposome. The pH-sensitive lipid composition gave 8-fold higher efficiency than the corresponding pH-insensitive composition. The transformation efficiency of the target cell also depended on the regulation of gene expression; cells incubated with dibutyryl-cAMP and theophylline showed a much higher level of transformation frequency than cells incubated without the drugs. When all liposome and incubation parameters are optimized, the Ltk- cells showed a 47% efficiency for the short-term transformation, and 2% for the long-term transformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We prepared thermosensitive poly( N-(2-hydroxypropyl)methacrylamide mono/dilactate) (pHPMA mono/dilactate) polymer and studied temperature-triggered contents release from polymer-coated liposomes. HPMA mono/dilactate polymer was synthesized with a cholesterol anchor suitable for incorporation in the liposomal bilayers and with a cloud point (CP) temperature of the polymer slightly above normal body temperature (42 degrees C). Dynamic light scattering (DLS) measurements showed that whereas the size of noncoated liposomes remained stable upon raising the temperature from 25 to 46 degrees C, polymer-coated liposomes aggregated around 43 degrees C. Also, noncoated liposomes loaded with calcein showed hardly any leakage of the fluorescent marker when heated to 46 degrees C. However, polymer-coated liposomes showed a high degree of temperature-triggered calcein release above the CP of the polymer. Likely, liposome aggregation and bilayer destabilization are triggered because of the precipitation of the thermosensitive polymer above its CP onto the liposomal bilayers, followed by permeabilization of the liposomal membrane. This study demonstrates that liposomes surface-modified with HPMA mono/dilactate copolymer are attractive systems for achieving temperature-triggered contents release.  相似文献   

12.
The goal of our studies was to develop liposomes containing antiviral drugs and targeted with antiviral antibody (immunoliposomes) that would be effective at inhibiting replication of herpes simplex virus (HSV) in vitro. To achieve this, a monoclonal antibody to glycoprotein D of HSV was derivatized with palmitic acid and was incorporated into the lamellae of dehydration-rehydration vesicles. The gD containing immunoliposomes were shown to bind specifically to HSV-infected rabbit corneal cells in vitro, whereas control immunoliposomes prepared with a monoclonal antibody of the same class as the anti-gD failed to preferentially bind to virus-infected cells. The gD immunoliposome binding was inhibitable by pretreatment with rabbit anti-HSV serum but not by aggregated normal serum. Thus liposome binding was judged to represent an antigen-antibody reaction not binding to Fc receptors expressed by cells infected with HSV. Immunoliposomes loaded with iododeoxyuridine (IUDR) leaked drug rapidly at 37 degrees C, whereas acyclovir (ACV)-loaded liposomes still contained 48% of drug after 24 hr at 37 degrees C. The ACV-liposomes retained 44% of drug after 14 days at 4 degrees C. The ability of immunoliposomes to inhibit virus replication was compared with that of untargeted and empty liposomes by means of virus yield assays in vitro, Immunoliposomes loaded with either IUDR or ACV inhibited virus replication, although ACV-containing immunoliposomes were the most efficacious. The implications of our in vitro results for the development of immunoliposomes suitable for the treatment of ocular herpes infection are briefly discussed.  相似文献   

13.
A monoclonal antibody against the rat colon carcinoma CC531 was covalently coupled to liposomes containing a dipalmitoylated derivative of the anticancer drug FUdR as a prodrug in their bilayers. We investigated the in vitro interaction of these liposomes with CC531 target cells and the mechanism by which they deliver the active drug FUdR intracellularly to the cells by monitoring the fate of the liposomal bilayer markers cholesterol-[(14)C]oleate and [(3)H]cholesteryloleylether as well as the (3)H-labeled prodrug and colloidal gold as an encapsulated liposome marker. After binding of the immunoliposomes to the cell surface, only limited amounts were internalized as demonstrated by a low level of hydrolysis of liposomal cholesterol ester and by morphological studies employing colloidal gold-labeled immunoliposomes. By contrast, already within 24 h immunoliposome-incorporated FUdR-dP was hydrolyzed virtually completely to the parent drug FUdR intracellularly. This process was inhibited by a variety of endocytosis inhibitors, indicating that the prodrug enters and is processed by the cells by a mechanism involving an endocytic process, resulting in intracellular FUdR concentrations up to 3000-fold higher than those in the medium. Immunoliposomes containing poly(ethyleneglycol) (PEG) chains on their surface, with the antibody coupled either directly to the bilayer or at the distal end of the PEG chains were able to deliver the prodrug into the tumor cells at the same rate as immunoliposomes without PEG. Based on these observations, we tentatively conclude that during the interaction of the immunoliposomes with the tumor cells the lipophilic prodrug FUdR-dP is selectively transferred to the cell surface and subsequently internalized by constitutive endocytic or pinocytic invaginations of the plasma membrane, thus ultimately delivering the prodrug to a lysosomal compartment where hydrolysis and release of parent drug takes place. This concept allows for an efficient delivery of a liposome-associated drug without the need for the liposome as such to be internalized by the cells.  相似文献   

14.
In the present study the cellular uptake of targeted immunoliposomes by interleukin-1 activated human endothelial cells has been analysed by several spectroscopical and microscopical fluorescence techniques. Previous in vitro experiments demonstrated that the targeting of immunoliposomes to vascular selectins is a potential way for a selective drug delivery at inflammatory sites. In attempts to further adapt the targeting experiments to physiological conditions, we demonstrate that E-Selectin-directed immunoliposomes are able to bind their target cells under the simulated shear force conditions of capillary blood flow cumulatively for up to 18 h. In order to consequently follow the fate of liposomes after target binding, we analysed the route and degree of liposome internalization of the cells concentrating on cell activation state or various liposomal parameters, e.g., sterical stabilization, type of antibody or antibody coupling strategy. The use of NBD-labelled liposomes and subsequent fluorescence quenching outside the cells with dithionite show that circa 25% of the targeted immunoliposomes were internalized. According to inhibition experiments with agents that interfered with the endocytotic pathway, we found out that the major mechanism of liposome entry is endocytic. The entry involves, at least in part, receptor-mediated endocytosis via E-Selectin, a liposome accumulation in the endosomes and their acidification was proved by pyranine spectroscopic results. Furthermore, microscopical investigations demonstrate that also a fusion of liposomes with the cell membrane occurs followed by a release of entrapped calcein into the cytoplasm. These observations gain insight into the behaviour of E-Selectin-targeted immunoliposomes and indicate that these immunoliposomes have great potential to be used as drug carriers for intracellular drug delivery at inflammatory sites.  相似文献   

15.
Interactions of immunoliposomes with target cells   总被引:7,自引:0,他引:7  
We have covalently attached a monoclonal antibody (11-4.1) against the murine major histocompatibility antigen, H-2Kk, on the surface of liposomes. The interaction of these antibody-coated liposomes (immunoliposomes) with target cells, RDM-4 lymphoma (H-2Kk), was investigated. About 90% of the immunoliposomes taken up by target cells at 4 degrees C could be removed by a mild protease treatment of the cells, whereas only 30% of the uptake at 37 degrees C was labile to the same treatment. Furthermore, the uptake of immunoliposomes at 37 degrees C was inhibitable by cytochalasin B or by a combination of 2-deoxyglucose and NaN3. These results suggest that immunoliposome binding to the target cell surface is the primary uptake event at 4 degrees C and that the surface-bound liposomes are rapidly internalized by the cells at 37 degrees C, probably via an endocytic pathway. Studies with fluorescence microscopy of target cells treated with immunoliposomes containing carboxyfluorescein also supported this conclusion. If endocytosis is the mechanism by which immunoliposomes gain entry into target cells, the efficacy of a cytotoxic drug encapsulated would depend on the resistance of the drug to lysosomal inactivation and its ability to escape from the lysosomal system. Consistent with this notion, we observed that methotrexate encapsulated in liposomes bearing 11-4.1 antibody specifically inhibited deoxy[6-3H]uridine incorporation into DNA in target RDM-4 cells but not in P3-X63-Ag8 myeloma cells (H-2Kd) at the same doses. The observed cytotoxic effect of encapsulated methotrexate could be reversed by the treatment of cells with a lysosomotropic amine, chloroquine, which has been shown to increase the intralysosomal pH of mammalian cells. On the other hand, cytosine-beta-D-arabinofuranoside encapsulated in immunoliposomes showed no target-specific killing, probably because the drug is readily inactivated in the lysosomal system. These results are discussed in terms of the drug carrier potential of immunoliposomes.  相似文献   

16.
Dioleoyl phosphatidylethanolamine (DOPE) does not form stable bilayer liposomes at room temperature and neutral pH. However, stable unilamellar liposomes could be prepared by mixing DOPE with a minimum of 12% of a haptenated lipid, N-(dinitrophenylaminocaproyl)-phosphatidylethanolamine (DNP-cap-PE). When the liposomes bound to rabbit anti-DNP IgG that had been adsorbed on a glass surface, lysis of the liposome occurred with the release of the contents into the medium as judged by the fluorescence enhancement of an entrapped self-quenching dye, calcein. On the other hand, incubation of the same liposomes with glass surfaces coated with normal rabbit IgG had little effect. In addition, free anti-DNP IgG induced aggregation of the liposomes but did not cause any dye release. Liposomes composed of dioleoyl phosphatidylcholine (DOPC) and DNP-cap-PE did not lyse when added to the glass surfaces coated with either anti-DNP IgG or normal IgG. A likely mechanism for liposome lysis is that the DNP-cap-PE laterally diffuse to the contact area between the liposome and the glass. Binding of the haptenated lipid with the immobilized and multivalent antibody trap the haptenated lipids in the contact area. As a result of lateral phase separation, lipids may undergo the bilayer to hexagonal phase transition, leading to the leakage of the entrapped dye. Because both the free hapten and the free antibody inhibited the liposome leakage, this process could be used to assay for the free hapten or antibody. We have shown that inhibition assays performed by using this principle can easily detect 10 pmol of free DNP-glycine in 40 microliter. Furthermore, by substituting human glycophorin A, a transmembrane glycoprotein, for the lipid hapten, we have demonstrated that this assay system is also applicable to detect protein antigen with a sensitivity of sub-nanogram level.  相似文献   

17.
The potential biomedical utility of the photoinduced destabilization of liposomes depends in part on the use of green to near infrared light with its inherent therapeutic advantages. The polymerization of bilayers can be sensitized to green light by associating selected amphiphilic cyanine dyes, i.e. the cationic 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine (DiI), or the corresponding anionic disulfonated DiI (DiI-DS), with the lipid bilayer. The DiI sensitization of the polymerization of 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine/1,2-bis[10-(2', 4'-hexadienoyloxy)-decanoyl]-sn-glycero-3-phosphocholine liposomes caused liposome destabilization with release of encapsulated aqueous markers. In separate experiments, similar photosensitive liposomes were endocytosed by cultured HeLa cells. Exposure of the cells and liposomes to 550 nm light caused a net movement of the liposome-encapsulated 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) from low pH compartment(s) to higher pH compartment(s). This suggests that photolysis of DiI-labelled liposomes results in delivery of the contents of the endocytosed liposomes to the cytoplasm. The release of HPTS into the cytoplasm appears to require the photoactivated fusion of the labelled liposomes with the endosomal membrane. These studies aid in the design of visible light sensitive liposomes for the delivery of liposome-encapsulated reagents to the cytoplasm.  相似文献   

18.
H Ellens  J Bentz  F C Szoka 《Biochemistry》1986,25(2):285-294
We have examined whether there is a relationship between the lamellar-hexagonal phase transition temperature, TH, and the initial kinetics of H+- and Ca2+-induced destabilization of phosphatidylethanolamine (PE) liposomes. The liposomes were composed of dioleoylphosphatidylethanolamine, egg phosphatidylethanolamine (EPE), or phosphatidylethanolamine prepared from egg phosphatidylcholine by transesterification (TPE). These lipids have well-spaced lamellar-hexagonal phase transition temperatures (approximately 12, approximately 45, and approximately 57 degrees C) in a temperature range that allows us to measure the initial kinetics of bilayer destabilization, both below and above TH. The liposomes were prepared at pH 9.5. The TH of EPE and TPE was measured by using differential scanning calorimetry, and it was found that the TH was essentially the same at low pH or at high pH in the presence of 20 mM Ca2+. At temperatures well below TH, either at pH 4.5 or at pH 9.5 in the presence of Ca2+, the liposomes aggregate, leak, and undergo lipid mixing and mixing of contents. We show that liposome/liposome contact is involved in the destabilization of the PE liposomes. The temperature dependence of leakage, lipid mixing, and mixing of contents shows that there is a massive enhancement in the rate of leakage when the temperature approaches the TH of the particular PE and that lipid mixing appears to be enhanced. However, the fusion (mixing of aqueous contents) is diminished or even abolished at temperatures above TH. At and above the TH, a new mechanism of liposome destabilization arises, evidently dependent upon the ability of the PE molecules to adapt new morphological structures at these temperatures. We propose that this destabilization demarks the first step in the pathway to the eventual formation of the HII phase. Thus, the polymorphism accessible to PE is a powerful agent for membrane destabilization, but additional factors are required for fusion.  相似文献   

19.
Abstract

We have prepared liposomes of dioleoylphosphatidylethanolamine (DOPE) which have been stabilized by addition of 9-12 mol% N-biotinyl- phosphatidylethanolamine. Liposomes composed of DOPE/N-biotinyl-PE are quite stable and non-leaky although they exhibit strong temperature-dependent leakage following incorporation of palmitylated murine monoclonal antibodies as a targeting ligand. Addition of magnetic chromium dioxide particles coated with anti-mouse antibody to these immunoliposomes lead to their aggregation and the release of entrapped calcein. The lytic event was biphasic with an initial rapid release of 20% dye within 5 min. followed by a slower rate which reached nearly 40% release after 80 min. The rapid release phase was dependent upon the concentration of the liposomes and that of the multivalent particles. Lysis was immunospecific since no release was observed upon addition of nonspecific immunomagnetic particles to the immunoliposomes or if no antibody was incorporated into the liposome. Lysis could also be blocked by the addition of free murine antibody to the solution. The ability of these liposomes to release their contents in response to binding a multivalent antigen validates their potential for therapeutic or diagnostic applications.  相似文献   

20.
Preparation and characterization of heat-sensitive immunoliposomes   总被引:3,自引:0,他引:3  
Immunoliposomes able to bind specifically to target cells and to release their encapsulated contents upon brief heating were prepared. Monoclonal anti-H2Kk was covalently derivatized with palmitic acid by the method of Huang, A. et al. (Huang, A., Tsao, Y.S., Kennel, S.J. and Huang, L. (1982) Biochim. Biophys. Acta 716, 140-150). The palmitoyl antibody was injected at a controlled rate into a suspension of fused unilamellar dipalmitoylphosphatidylcholine liposomes maintained at a constant temperature. The final protein-to-lipid ratio of the resultant liposomes with incorporated antibody (immunoliposomes) was dependent upon the rate of antibody injection and the lipid concentration. Injection of palmitoyl antibody into a liposome suspension containing 50 mM carboxyfluorescein at 41 degrees C resulted in simultaneous antibody incorporation and entrapment of dye. Immunoliposomes were able to release the entrapped carboxyfluorescein upon heating. The release of dye at temperatures between the pre- and main-transition temperatures of DPPC was abolished by the addition of calf serum (5%). Furthermore, the presence of serum resulted in an increase in the temperature of the maximal release rate and also in the rate of release at that temperature. Retention of antigen-binding capacity was demonstrated by the ability of the immunoliposomes to bind specifically to the target cells. Rapid release of entrapped carboxyfluorescein from immunoliposomes bound to target cells at 4 degrees C was achieved upon brief exposure (less than 3 min) at 41 degrees C. These heat-sensitive immunoliposomes may be useful in enhancing drug delivery to target cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号