首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study focused on temperature assessments within a hornet nest. The measurements encompassed adult hornets, brood combs and the various stages of brood, and involved a thermographic method. Body parts of adult hornets were found to vary in their temperature, with the thorax eliciting the highest temperature and the abdomen the lowest. Similarly, there were thermal variances between larvae at instars 4-5, light-colored pupae and dark pupae. The measurements were made at day and night (when the entire population was present in the nest) on nests containing thousands of individuals at various ages. Most of the pupae measured during October were hornet drones. The usual air temperature between the (subterranean) combs was 28.7 degrees C, while the outside (ground level) temperature was 23.5 degrees C. The paper discusses the creation of heat by hornets, the thermoregulation throughout night and day, both by the hornets proper as well as by their products (comb and silk). Also discussed is the intra-nest conversion of one form of energy to another, as heat to electric current or vice versa.  相似文献   

2.
Our study focused on the thermoelectric properties of hornet cuticle at different body compartments and under varying states of awakeness. We also measured the temperature alteration patterns in various body parts of the hornet. Electric voltage and current were dependent on: a) the state of wakefulness; b) the part of the body. The current was lowest in dead hornet cuticle, somewhat higher in narcotized hornet cuticle, considerably higher in the cuticle of hornets awakening from anesthesia and highest in fully awake hornets. Voltage values were of the same order for dead and narcotized hornets, but considerably higher in unanesthetized awake hornets and highest in the cuticle of hornets awakening from anesthesia. At optimal temperature (29 degrees C) the hornet body temperature was higher on the abdominal cuticle than on other body parts. At an ambient temperature of 20 degrees C, the highest temperatures were recorded on the head and thorax, and the lowest on the abdomen. Body temperatures of live hornets were higher than the cooler ambient temperature outside the nest at night. The results suggest that the hornets possess an intrinsic biological heat pump mechanism, which can be used to achieve active thermoregulation.  相似文献   

3.
Electrical and physical phenomena have been recorded and measured in the cuticle, silk caps and comb of the Oriental hornet Vespa orientalis (Hymenoptera : Vespdnae). Cuticle of active or narcotized live hornets as well as dead ones, produce, at optimal temperature for Vespinae biological activity, voltages of several hundred mV, currents of up to several hundred nA and the appropriate electric power. The cuticle has a large electrical capacitance, relative to its volume and contains non-linear and active electrical elements. A theoretical model was proposed to explain the capacitance phenomenon. An additional phenomenon observed is the production of electric energy under the influence of light and heat. Some electrical phenomena, especially the photoconductivity were measured also in 3 ant species.Measurements of the electrical capacitance of silk caps revealed that it is dependent on: (a) age of the pupa; immediately on pupation, the values are highest and diminish with maturation; (b) caste; capacitance for the queen pupae is 20–50 mF; and which is higher than for worker pupae, where it ranges between about 5–7 mF; and (c) location of the measuring electrodes; in the case of external-internal measurements, the values obtained were greater by 2 orders of magnitude than those obtained with both electrodes placed on the same side of the silk cap. In all cases, it was found that the capacitant values are high when compared with the size of the caps and the available commercial capacitors of the same size.The hornet comb may be regarded as comprised of an array of 3-dimensional capacitors linked in parallel, thereby forming a large dry battery having one negative pole — the pedicel — which grounds the comb, and one positive pole — the silk domes of the comb cells. The possibility that the electric energy stored in the comb cell walls may have a thermoregulatory function, serving both the brood and the adult nest population was discussed. We assumed that this mechanism is common for the combs of all social as well as many solitary wasps.  相似文献   

4.
5.
Alarm communication is a key adaptation that helps social groups resist predation and rally defenses. In Asia, the world’s largest hornet, Vespa mandarinia, and the smaller hornet, Vespa velutina, prey upon foragers and nests of the Asian honey bee, Apis cerana. We attacked foragers and colony nest entrances with these predators and provide the first evidence, in social insects, of an alarm signal that encodes graded danger and attack context. We show that, like Apis mellifera, A. cerana possesses a vibrational “stop signal,” which can be triggered by predator attacks upon foragers and inhibits waggle dancing. Large hornet attacks were more dangerous and resulted in higher bee mortality. Per attack at the colony level, large hornets elicited more stop signals than small hornets. Unexpectedly, stop signals elicited by large hornets (SS large hornet) had a significantly higher vibrational fundamental frequency than those elicited by small hornets (SS small hornet) and were more effective at inhibiting waggle dancing. Stop signals resulting from attacks upon the nest entrance (SS nest) were produced by foragers and guards and were significantly longer in pulse duration than stop signals elicited by attacks upon foragers (SS forager). Unlike SS forager, SS nest were targeted at dancing and non-dancing foragers and had the common effect, tuned to hornet threat level, of inhibiting bee departures from the safe interior of the nest. Meanwhile, nest defenders were triggered by the bee alarm pheromone and live hornet presence to heat-ball the hornet. In A. cerana, sophisticated recruitment communication that encodes food location, the waggle dance, is therefore matched with an inhibitory/alarm signal that encodes information about the context of danger and its threat level.  相似文献   

6.
This article deals with the silk weave produced by pupating larvae of the Oriental hornet and its electric properties. Larvae of this hornet commence pupation at approximately 2 weeks of age. Creation of the cocoonal silk weave requires a number of hours and the encased pupa remains in the cocoon for approximately 2 more weeks before ecloding as an adult. The silk weave is initially of a creamish white color, but gradually becomes brown-gray owing to the activity of certain bacteria secreted in the silk. The silk weave is composed of fibers arranged in multiple layers with interposed surfaces occupying a considerable part of the area and containing pockets of bacteria. The spun silk contains both metallic and non-metallic elements, mostly K and Cl but also Mg, P, S, Ca, Ti and V. Shaped as a dome, the silk projects considerably beyond the cell proper, contributing importantly to its total volume and providing a shield for the contained pupa against predators, parasites, or extreme changes in temperature, as well as affording a 'sterile and clean room' in which the pupa can form its new cuticle without the interference of contaminating dust particles or the turbulence of air currents. The silk is endowed with electric properties. Inter alia, a thermoelectric phenomenon was observed in the dark, namely, upon increase in temperature the current rose to several hundred nano Amperes (nA); in light, a photovoltaic effect was observed involving voltages of several dozen millivolts (mV), with a sharp transition between the current and voltage during transition from darkness to light. Also recorded was a very high electric capacitance, amounting to scores of milli farads (mF). In all, the pupal silk behaves like an organic semiconductor, in that its electric properties are temperature-dependent, and it also displays ferroelectric properties. Additionally, a luminescence phenomenon was recorded on the silk, wherein excitation at wavelengths within the UV(i.e. 249, 290 and 312 nm) range yielded an emission spectrum at a wavelength of 450 and of 530 nm. The silk caps are anisotropic in that the emission from the outside is lower than that from the inside. By way of recap, the various mentioned properties of the pupal silk are discussed from their biological and physical aspects.  相似文献   

7.
Honeybee larvae and pupae are extremely stenothermic, i.e. they strongly depend on accurate regulation of brood nest temperature for proper development (33–36°C). Here we study the mechanisms of social thermoregulation of honeybee colonies under changing environmental temperatures concerning the contribution of individuals to colony temperature homeostasis. Beside migration activity within the nest, the main active process is “endothermy on demand” of adults. An increase of cold stress (cooling of the colony) increases the intensity of heat production with thoracic flight muscles and the number of endothermic individuals, especially in the brood nest. As endothermy means hard work for bees, this eases much burden of nestmates which can stay ectothermic. Concerning the active reaction to cold stress by endothermy, age polyethism is reduced to only two physiologically predetermined task divisions, 0 to ∼2 days and older. Endothermic heat production is the job of bees older than about two days. They are all similarly engaged in active heat production both in intensity and frequency. Their active heat production has an important reinforcement effect on passive heat production of the many ectothermic bees and of the brood. Ectothermy is most frequent in young bees (<∼2 days) both outside and inside of brood nest cells. We suggest young bees visit warm brood nest cells not only to clean them but also to speed up flight muscle development for proper endothermy and foraging later in their life. Young bees inside brood nest cells mostly receive heat from the surrounding cell wall during cold stress, whereas older bees predominantly transfer heat from the thorax to the cell wall. Endothermic bees regulate brood comb temperature more accurately than local air temperature. They apply the heat as close to the brood as possible: workers heating cells from within have a higher probability of endothermy than those on the comb surface. The findings show that thermal homeostasis of honeybee colonies is achieved by a combination of active and passive processes. The differential individual endothermic and behavioral reactions sum up to an integrated action of the honeybee colony as a superorganism.  相似文献   

8.
We extracted silk produced by the larva of the hornet Vespa simillima xanthoptera Cameron from its nest. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the extracted hornet silk showed four major components with molecular weights between 35 and 60 kDa. The main amino acid components of the hornet silk protein were Ala (33.5%), Ser (16.9%), Asp (8.5%) and Glu (8.1%). The hornet silk could be dissolved in hexafluoroisopropyl alcohol (HFIP) at 25 degrees C without incurring molecular degradation. A transparent film of hornet silk was obtained readily by the formation of a cast upon drying of the hornet silk in the HFIP solution. Residual HFIP solvent was removed from the film by extraction with pure water. Solid-state 13C NMR and FT-IR measurements revealed that the secondary structures of hornet silk proteins in the native state consisted of coexisting alpha-helix and beta-sheet conformations. The beta-sheet to alpha-helix ratio, which was changed by processing, was mainly responsible for the silk's thermostability.  相似文献   

9.
Red imported fire ant, Solenopsis invicta, colonies were infected horizontally by introducing live brood (mainly larvae and pupae) infected with Thelohania solenopsae. Live, infected brood introduced into uninfected colonies were adopted and raised to adulthood instead of being executed by the recipient colony. Introductions of infected larvae with uninfected pupae, which eclose into adult worker caste fire ants, resulted in an 80% infection rate of the inoculated colonies. Infections from introductions of infected pupae with uninfected larvae resulted in a 37.5% infection of inoculated colonies. Infections were also detected in 11.6 and 3.7% of the adult worker caste ants that eclosed from uninfected large larvae and pupae, respectively, that were held with infected adult workers. Microscopic examination of infected brood revealed sporoblasts and large numbers of spores of T. solenopsae in S. invicta pupae.  相似文献   

10.
The yellow‐legged Asian hornet is an invasive species of wasps, indigenous to the Southeast Asia but recently spreading in Southern Europe. Because of its exponential diffusion and its serious threat to the local honeybee colonies (and to humans as well), restraint measures are currently under investigation. We developed and tested an harmonic radar capable of tracking the flying trajectory of these insects, once equipped with a small transponder, in their natural environment. Several hornets were captured close to a small cluster of honeybee hives, tagged with different transponders and then released in order to follow the flight toward their nest. On‐field testing proved an initial maximum detection range of about 125 m in a hilly and woody area. A number of detections were clearly recorded, and preferential directions of flight were identified. The system herein described is intended as a first low‐cost harmonic radar; it proved the capability to track the hornets while flying and it permitted to test the tagging techniques. Several upgrades of the system have been identified during this work and are extensively described in the last chapter. The designed system has three major advantages over conventional harmonic radars. First and most importantly, it adopts advanced processing techniques to suppress clutter and to improve target detection. Second, it allows radar operations in complex environments, generally hilly and rich in vegetation. Finally, it can continuously track tagged insects (24/7) and in any meteorological condition, providing an effective tool in order to locate the nests of the yellow‐legged Asian hornet.  相似文献   

11.
Consistent electrical and physical phenomena in the cuticle of the Oriental hornet have been recorded and measured. Active or narcotized, live hornets as well as dead ones produce, at optimal temperature for vespine biological activity, voltages of several hundred mV, currents of up to several tenths of nA, and the appropriate power. The electric resistance of the hornet cuticle and hornet silk cocoon point to their being organic semiconductors. Both of these have a large electric capacitance relative to their volume. A theoretical model is proposed to explain the capacitance phenomenon. Other phenomena observed are the production of electric energy under the influence of light and heat and also change in the various other electric properties of hornet cuticle under the influence of solar irradiation. The distribution of daily hornet activities seems to be correlated with the hours of maximal irradiation. All the afore mentioned phenomena point to the fact that there is recourse to electric energy in the daily routine of hornets and that this electric energy seems to be derived from solar energy. The conversion of the latter into the former takes place in the body of the hornet which thereby functions in the manner of a solar cell. The presence of a cuticular exoskeleton containing chitin, characterizes very many species of Invertebrates (Arthropoda). We assume that the phenomena similar to those described in this paper take place also in many other species. We hope that part of our findings will be utilizable in future developments in the fields of semiconductors and the use of solar energy.  相似文献   

12.
Social waves in giant honeybees repel hornets   总被引:3,自引:0,他引:3  
Giant honeybees (Apis dorsata) nest in the open and have evolved a plethora of defence behaviors. Against predatory wasps, including hornets, they display highly coordinated Mexican wave-like cascades termed 'shimmering'. Shimmering starts at distinct spots on the nest surface and then spreads across the nest within a split second whereby hundreds of individual bees flip their abdomens upwards. However, so far it is not known whether prey and predator interact and if shimmering has anti-predatory significance. This article reports on the complex spatial and temporal patterns of interaction between Giant honeybee and hornet exemplified in 450 filmed episodes of two A. dorsata colonies and hornets (Vespa sp.). Detailed frame-by-frame analysis showed that shimmering elicits an avoidance response from the hornets showing a strong temporal correlation with the time course of shimmering. In turn, the strength and the rate of the bees' shimmering are modulated by the hornets' flight speed and proximity. The findings suggest that shimmering creates a 'shelter zone' of around 50 cm that prevents predatory wasps from foraging bees directly from the nest surface. Thus shimmering appears to be a key defence strategy that supports the Giant honeybees' open-nesting life-style.  相似文献   

13.
Of the 34 vespid species recorded worldwide as invasive aliens, particular attention is currently being given to the yellow-legged hornet Vespa velutina that has invaded Europe, Japan, and Korea. The hornet is a voracious predator of bees and a serious threat to bee colonies and bee pollination. Control measures are needed, but their development has been challenging as biological and ecological studies are limited by the short field season and the cryptic nesting behavior of these hornets. A Vespa rearing process can generate the large numbers of workers, gynes, and males that are essential for studying chemical ecology and life history and for experimental testing of various hypotheses. We present a synthesis of suitable methods and techniques for year-round Vespa hornet rearing. Particular reference is given to Chinese know-how and experience with Vespa rearing for medicinal and culinary motivations. We also draw on observations with reared insects that have a similar life history as Vespa hornets, namely Bombus bumblebees and Vespula yellowjackets. Key challenges to optimizing Vespa hornet rearing are identified and discussed.  相似文献   

14.
Social insects display task-related division of labour. In some species, division of labour is related to differences in body size, and worker caste members display morphological adaptations suited for particular tasks. Bumble-bee workers (Bombus spp.) can vary in mass by eight- to tenfold within a single colony, which previous work has linked to division of labour. However, little is known about the proximate mechanism behind the production of this wide range of size variation within the worker caste. Here, we quantify the larval feeding in Bombus impatiens in different nest zones of increasing distance from the centre. There was a significant difference in the number of feedings per larva across zones, with a significant decrease in feeding rates as one moved outwards from the centre of the nest. Likewise, the diameter of the pupae in the peripheral zones was significantly smaller than that of pupae in the centre. Therefore, we conclude that the differential feeding of larvae within a nest, which leads to the size variation within the worker caste, is based on the location of brood clumps. Our work is consistent with the hypothesis that some larvae are ‘forgotten’, providing a possible first mechanism for the creation of size polymorphism in B. impatiens.  相似文献   

15.
Hornet silk is a polymer of amino acids. One of the known properties of polymers is their electrical activity. The present study describes the results of electrical measurements carried out vertically on the silk cap of pupae of the Oriental hornet Vespa orientalis (Hymenoptera, Vespinae). The measurements undertaken were the temperature-dependent electric current, voltage and resistance, all measured within the range of biological temperatures, as well as the capacitance. The temperature-dependent spontaneous current attained values up to 327 nano Amperes (nA) while the maximal voltage reached 347 millivolt (mV). The electrical resistance was low and steady (1-20 mu omega) at temperatures ranging between 19-32 degrees C, but at lower or higher temperature it increased fairly sharply by about three orders of magnitude. The electrical capacitance, computed according to the discharge curve (decay curve) amounted to 0.4 microFarad (microF). The paper also discusses the role of the pupal silk as producer of a 'clean room' while the cuticle is being laid down by the pupae after undergoing metamorphosis, as well as the significance of the measured electrical parameters vis-à-vis the developing pupae.  相似文献   

16.
Summary 1) When a thermal gradient (20–40° C) was established along a laboratory nest, Camponotus mus nurse workers showed a photoperiodic circadian rhythm of temperature preferences for brood rearing. Two different temperatures were daily selected to translocate the brood, i.e. 30.8° C selected at the middle of the photophase, and 27.5° C selected during the scotophase, 8 h later. 2) The daily temperature response of nurse workers consisted of paired high and low-temperature translocations, with a 8 hs-interval in between: high-temperature translocation was shown to be entrained by the photophase length, whereas low-temperature translocation was shown to be dependent on the precedent one. 3) Prey deprivation to the colony modified the brood transport behaviors resulting in translocations of only cocoons and large (ripe) larvae, stages in which the pupation processes are triggered. Small larvae and eggs remained located at 27.5° C. 4) Evaluation of pupa developmental time as well as percentage of pupa mortality at different temperature regimes allowed to construct an efficiency index relating pupa survival and cocoon developmental time. In the range of temperatures selected by nurses, the index reached its maximal values. 5) The ecological significance of these results is discussed.  相似文献   

17.
Abstract. 1. Nest thermoregulation follows a similar pattern in Vespa simillima Smith and V. tropica L. There is a gradual decline in the daily fluctuations of nest temperature to a constant steady state which is maintained during the production of the first sexuals, followed by a sudden loss of stability at the end of the colony cycle.
2. The larvae are not major producers of heat, as they are unable to raise their body temperature by more than 1–2°C above ambient. However, they act as heat reservoirs and providers of food in the form of larval secretions. This feeding may allow workers to raise their body temperature during non-foraging periods.
3. The adults are capable of raising their body temperature many degrees above ambient and the presence of even one adult, in this case a V.analis F. mother queen, was able to raise the nest temperature.
4. Supplementary carbohydrate food promotes thermogenesis and enhances colony development.  相似文献   

18.
As the structural bases of insect societies are essential to colony survival, nests must be protected from predation. Nest defence behaviours are among the most important roles assigned to worker members. However, in hornet societies, temporal polyethism (age-dependent division of labour among workers) is assumed to be weak. Few studies have investigated this phenomenon, probably because hornet nests are aggressively defended and dangerous to approach. In the present study, we propose a method for rearing nests of Vespa velutina, a species newly introduced into Europe. This method enables the handling of hornets, and thus the design of experiments. By marking all newly emerged hornets, we recorded aggressiveness in workers of different ages from three captive colonies. We observed that nest defence behaviour in V. velutina depends on the age of the workers. Nest defence appears to be mediated by the queen, probably through pheromones that promote nest organization. We also identified a previously unreported but important behaviour in V. velutina that workers are aggressive towards male hornets. This behaviour might be a strategy to avoid inbreeding. Collectively, our results provide new research perspectives for the management of social hymenopteran predators.  相似文献   

19.
Several models predict changes in the distributions and incidences of diseases associated with climate change. However, studies that investigate how microclimatic changes may affect host–parasite relationships are scarce. Here, we experimentally increased the temperature in blue tit Cyanistes caeruleus nest boxes during their breeding season to determine its effects on the parasitic abundance (i.e. of nest‐dwelling ectoparasites, blood‐sucking flying insects and hemoparasites) in nests and the host condition of nestlings and adults. The temperature was increased using heat mats placed underneath the nest material, which resulted in an average temperature increase of 3ºC and a reduction in relative humidity of about six units. The abundance of mites Dermanyssus gallinoides and blowfly pupae Protocalliphora azurea was significantly reduced in heated nest boxes. Although not statistically significant, a lower prevalence of flea larvae Ceratophyllus gallinae was also found in heated nests. However, heat treatment did not affect hemoparasite infection of adult blue tits or the body condition of adult and nestling blue tits. In conclusion, heat treatment in blue tit nests reduced nest‐dwelling ectoparasites yet without any apparent benefit for the host.  相似文献   

20.
We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α‐helix conformations. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 41–52, 2015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号